Demonstrator für hochratige RFID- und NFC-Systeme

Michael Roland

Diplomarbeit

am FH-Masterstudiengang
Embedded Systems Design
FH Oberösterreich, Campus Hagenberg

Juli 2009

Inhalt

- Einleitung
 - Motivation & Zielsetzung
 - RFID und NFC
- Erhöhung der Datenrate
 - Zielsetzung
 - Einsatzgebiete
- Demonstrator
 - Prototyp
 - Übertragungsprotokoll
- 4 Ergebnisse

Inhalt

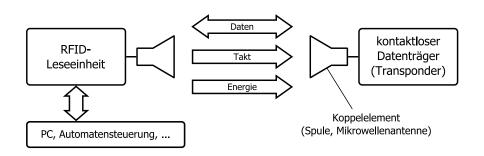
- Einleitung
 - Motivation & Zielsetzung
 - RFID und NFC
- Erhöhung der Datenrate
 - Zielsetzung
 - Einsatzgebiete
- Open Demonstrator
 - Prototyp
 - Übertragungsprotokoll
- 4 Ergebnisse

Motivation

- zunehmende Weiterentwicklung der Smartcard-Mikrochips
- Verbesserung der On-Chip-Speichertechnologien
- ⇒ steigende Speicherkapazität
- ⇒ steigende Speicherzugriffsgeschwindigkeit
- ⇒ steigende Berechnungsgeschwindigkeit
- ABER: Übertragungsgeschwindigkeit noch nicht an die Weiterentwicklungen angepasst
- Konzepte zur Erhöhung der Datenrate waren bereits Thema mehrerer Diplomarbeiten
- Jetzt sollen diese Konzepte anschaulich dargestellt werden

Zielsetzung

- Umsetzung der Übertragungskonzepte in einem Prototyp
- Aufbau einer vollständigen Übertragungsstrecke
- Implementierung eines Übertragungsprotokolls
- Übertragung einer Bilddatei



Was ist RFID?

- ursprünglich: kontaktlose Identifikationssysteme und Diebstahlsicherung
- heute: kontaktlose Datenübertragungssysteme
- Anwendungen
 - Transport und Logistik
 - Zutrittskontrolle
 - Tieridentifikation
 - elektronische Ticket- und Bezahlsysteme
 - elektronischer Reisepass

Grundbestandteile jedes RFID-Systems

Varianten von RFID-Systemen

- kapazitiv gekoppelte Systeme
 - hochfrequentes elektrisches Feld
 - sehr geringe Reichweite
- induktiv gekoppelte Systeme
 - hochfrequentes magnetisches Feld (Transformatorprinzip)
 - bis zu einigen Metern Reichweite
- UHF-Backscatter-Systeme
 - elektromagnetische Wellenausbreitung
 - mehrere Meter Reichweite
 - * In dieser Diplomarbeit werden nur induktiv gekoppelte Systeme mit einer Betriebsfrequenz von 13,56 MHz betrachtet.

Aktuelle Standards

- Proximity cards (ISO/IEC 14443)
 - Distanzen bis zu 10 Zentimeter
 - z.B. Mifare, elektronische Reisepässe
- FeliCa (Sony)
 - vergleichbar mit Proximity
- Vicinity cards (ISO/IEC 15693)
 - Distanzen bis zu 1,5 Meter
 - z.B. Zutrittskontrolle, Logistik
- NFC (ISO/IEC 18092 + ISO/IEC 21481 + NFC Forum)
 - Distanzen bis zu 10 Zentimeter
 - kompatibel zu Proximity, FeliCa und Vicinity
 - NFC-Geräte können Transponder und Lesegeräte emulieren
 - NFC-Geräte können direkt miteinander kommunizieren
 - Spezifikation von Datenformaten f
 ür verschiedene Anwendungen

Inhalt

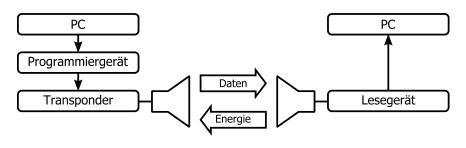
- Einleitung
 - Motivation & Zielsetzung
 - RFID und NFC
- Erhöhung der Datenrate
 - Zielsetzung
 - Einsatzgebiete
- Open Demonstrator
 - Prototyp
 - Übertragungsprotokoll
- 4 Ergebnisse

Zielsetzung

- Maximale Datenrate bei bestehenden Standards
 - Proximity cards: 848 kBit/s
 - FeliCa: 212 kBit/s
 - Vicinity cards: 27 kBit/s
- VHD: Very High Datarate
 - Erhöhung der Datenrate um ein Vielfaches auf 6,78 MBit/s

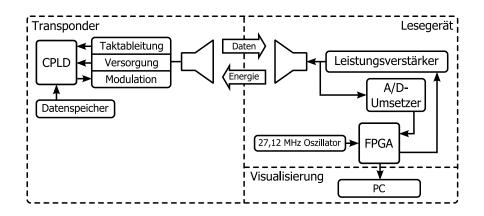
Einsatzgebiete

- zunehmendes Datenvolumen
- elektronischer Reisepass
 - Lesedauer mindestens 3 Sekunden
 - davon 50 Prozent f
 ür Daten
 übertragung
- NFC
 - TCP/IP über NFC
 - Sensoren mit NFC-Schnittstelle
 - Mobiltelefone als grafische Benutzeroberfläche
 - Gemeinsam genutzte Wiedergabegeräte

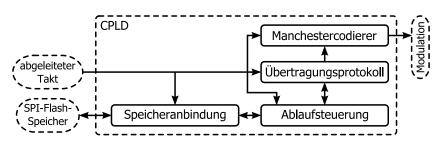

Inhalt

- Einleitung
 - Motivation & Zielsetzung
 - RFID und NFC
- Erhöhung der Datenrate
 - Zielsetzung
 - Einsatzgebiete
- Demonstrator
 - Prototyp
 - Übertragungsprotokoll
- 4 Ergebnisse

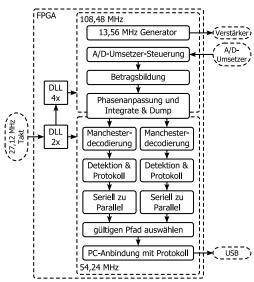
Übertragungsstrecke


 fehlerfreie Übertragung einer Datei von einem PC zu einem anderen

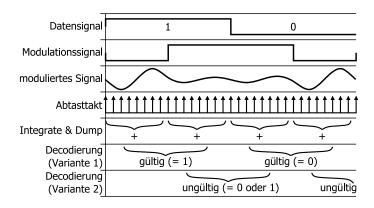
- Datei mit PC 1 auf Transponder speichern
- 2 Datei über VHD-Schnittstelle an Lesegerät/PC 2 senden
- Datei am Bildschirm anzeigen



Blockschaltbild der VHD-Hardware


Transponder

- Verarbeitungslogik des Transponders
 - Auslesen des Speichers
 - Verpacken in Frames des Übertragungsprotokolls
 - Manchestercodierung
 - manchestercodiertes Signal ist Schaltsignal für die Modulationstransistoren



16/28

Lesegerät

Warum gibt es zwei Decodierungspfade?

Anforderungen an das Übertragungsprotokol Michael Roland www.mroland.at

- Datenübertragung vom Transponder zum Lesegerät ohne Rückkanal
- Transpondererkennung
- Synchronisation/Auswahl des Manchesterdecodierungspfads
- Fehlererkennung
- Fehlerkorrektur

Aufbau des Übertragungsprotokolls

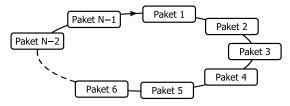
- Trennung in zwei Schichten:
- Zugriffskontrollschicht
 - Transpondererkennung
 - Synchronisation
- Datensicherungsschicht
 - Fehlererkennung
 - Fehlerkorrektur

Zugriffskontrollschicht

• Frameaufbau:

LSB	MSB	LSB	MSB	LSB	LSB	MSB	
 SYN		SYN		Datenteil	SYN		

- SYN
 - Synchronisationssequenz
 - Bitmuster: 01111110
- Datenteil
 - SYN darf nicht vorkommen (Bitstuffing)
 - Länge bestimmt Dauer zur Erkennung ob ein Transponder in Reichweite ist

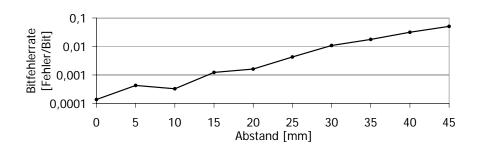


Datensicherungsschicht

Paketaufbau:

Kennung	ID	Datenlänge <i>M</i>	Paketlänge L	Daten	Prüfsumme
(1 Byte)	(2 Byte)	(3 Byte)	(1 Byte)	(L Byte)	(2 Byte)

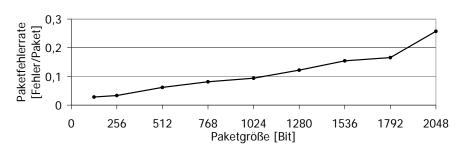
- Fehlererkennung und Fehlerkorrektur: Datenkarussellverfahren
 - Datei wird in kurze Pakete unterteilt (*L* Byte)
 - Jedes Paket enthält eine eindeutige Kennung (ID).
 - Jedes Paket enthält eine Prüfsumme (CRC).
 - Pakete werden endlos gesendet:



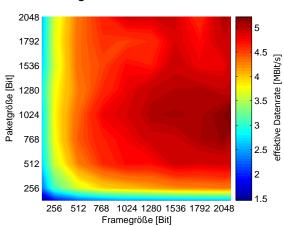
Inhalt

- Einleitung
 - Motivation & Zielsetzung
 - RFID und NFC
- Erhöhung der Datenrate
 - Zielsetzung
 - Einsatzgebiete
- Demonstrator
 - Prototyp
 - Übertragungsprotokoll
- 4 Ergebnisse

Messung der Bitfehlerrate

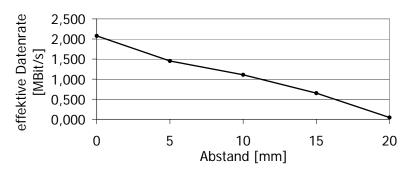


• bis 1 Zentimeter Abstand: zwischen 10⁻⁴ und 10⁻³


Messung der Paketfehlerrate

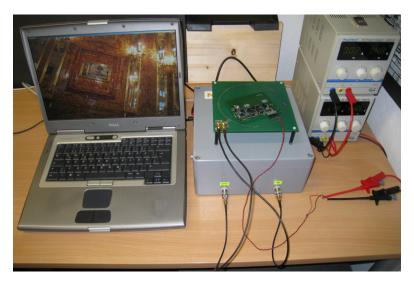
- Messung bei 1 Zentimeter Abstand zwischen Transponder- und Leseantenne
- Paketfehlerrate verläuft in etwa linear mit der Paketgröße

Effektive Datenübertragungsrate


- Ohne Berücksichtigung der Vollständigkeit der empfangenen Datei
- Messung bei 1 Zentimeter Abstand

 Optimum bei maximaler Framegröße und einer Paketgröße von 1024 Bit

Effektive Datenübertragungsrate


 Effektive Datenübertragungsrate zur Übertragung der vollständigen Datei

Reichweite bis 15 Millimeter möglich

Gesamtsystem

