
Software Card Emulation in NFC-enabled Mobile Phones:
Great Advantage or Security Nightmare?

Michael Roland
NFC Research Lab Hagenberg

University of Applied Sciences Upper Austria
Softwarepark 11, 4232 Hagenberg/Austria
michael.roland@fh-hagenberg.at

ABSTRACT
Software card emulation is a new approch to advance the
interoperability of NFC with legacy contactless smartcard
systems. It has been first introduced to NFC-enabled mobile
phones by Research In Motion (RIM) on their BlackBerry
platform. Software card emulation aims at opening and sim-
plifying the complex and tightly controlled card emulation
functionality. While this form of card emulation, that gets
rid of the secure element (a device tightly controlled by the
“big players”), is a great chance for development of innova-
tive NFC applications, it potentially makes card emulation
less secure and paves the way for interesting attack scenar-
ios. This paper evaluates the advantages and disadvantages
of software card emulation based on existing application sce-
narios and recent research results.

1. INTRODUCTION
With the emergence of Near Field Communication (NFC),
more and more NFC devices and applications hit the market.
However, the full potential of NFC is not available to all de-
velopers. Specifically, the secure element (SE), a smartcard
microchip that is used to perform secure card emulation, is
kept under tight control of device manufacturers and mobile
network operators. Nevertheless, card emulation is required
for interaction with many legacy RFID systems that are
currently used for access control, ticketing and payment. On
an NFC device, the secure element is used to store security
critical applications like credit cards, access control creden-
tials and public transport tickets. Through the device’s NFC
controller, the secure element can be accessed as if it were a
regular contactless smartcard.

Especially the payment sector – the part of NFC that seems
to generate the highest revenue – focuses on using the se-
cure element for payment applications. Therefore, a lot of
companies want to have access to secure elements to claim a
share of that revenue. As a result, many developers call for
easier access to card emulation capabilities.

An approach started by Research In Motion (RIM) on their
BlackBerry platform is software card emulation (also known
as “soft-SE” [7]). This mode allows interaction with legacy
RFID reader infrastructures through applications on the mo-
bile phone’s application processor without using a secure el-
ement. At first glance this mode seems to be a great new
feature for NFC devices. It opens up the – previously –
tightly controlled world of card emulation to a wide range
of developers. This will certainly lead to a number of new

and innovative NFC applications. This increase in use-cases
may, in turn, lead to an increased need for NFC devices and,
consequently, help NFC to finally kick off as a mass-market
technology. Besides software card emulation’s benefits, there
are, however, several downsides that come along with this
new approach.

This paper starts with an introduction to NFC technology
and its operating modes. The various types of card emula-
tion and their availability in current NFC devices are ex-
plained. Based on existing application scenarios for the card
emulation mode and based on recent research results, the ad-
vantages and disadvantages of software card emulation are
evaluated.

2. NEAR FIELD COMMUNICATION
Near Field Communication (NFC) is a contactless commu-
nication technology first standardized by Ecma (ECMA-
340, ECMA-352) and later adopted by ISO/IEC (ISO/IEC
18092, ISO/IEC 21481). It is an advancement of inductively
coupled proximity Radio Frequency Identification (RFID)
technology and smartcard technology. NFC is compatible to
legacy contactless smartcard systems based on the standards
ISO/IEC 14443 and FeliCa (JIS X 6319-4). Recent stan-
dardization activities aim at also adding compatibility to
ISO/IEC 15693 vicinity coupling systems. Besides standard-
ization through normative bodies like ISO/IEC and Ecma,
further specification of data formats, protocols, interoper-
ability requirements, device certification and NFC applica-
tions is driven by the NFC Forum1.

A basic principle of the NFC technology is “it’s all in a
touch” [4]. This means that simply touching an object or an
NFC device with another NFC device immediately triggers
an action. Objects can be equipped with so-called NFC tags
(simple contactless memory chips based on existing RFID
transponders). These tags are used to store content like In-
ternet addresses (URLs), telephone numbers, text messages
(SMS) or electronic business cards. The user can access the
information on a tag by simply touching it with an NFC
device.

NFC has three operating modes: peer-to-peer mode, reader/
writer mode and card emulation mode:

• Peer-to-peer mode is an operating mode specific to

1http://www.nfc-forum.org/

Fourth International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
June 18, 2012, Newcastle, UK

Downloaded from 
www.mroland.at

https://www.mroland.at/


Figure 1: The paths of NFC data through the chipset
of an NFC-enabled mobile phone.

NFC and allows two NFC devices to communicate di-
rectly with each other. For example, this mode can
be used to exchange business cards between two NFC-
enabled mobile phones or to exchange credentials for
a Bluetooth or WiFi link.

• In reader/writer mode, NFC devices can access con-
tactless smartcards, RFID transponders and NFC tags.
Thus, this mode makes NFC devices compatible to ex-
isting contactless tokens.

• In card emulation mode, an NFC device emulates a
contactless smartcard and, thus, is able to communi-
cate with existing RFID readers.

Fig. 1 shows the various paths of NFC data trough the
chipset of an NFC-enabled mobile phone. The application
processor is the mobile phone’s main processing unit. The
NFC controller is the core component of the NFC function-
ality in a device. It contains an NFC modem and performs
preprocessing of commands and data. The secure element
is a smartcard microchip that is capable of performing se-
cure card emulation. Path (1) routes commands and data
between the application processor and the NFC interface.
This path is used for peer-to-peer mode, reader/writer mode
and software card emulation. Path (2) routes commands and
data between the secure element and the NFC interface. This
path is used for secure card emulation. In addition to exter-
nal access through the NFC interface, the secure element is
connected to the application processor. That way, content on
the secure element can be managed from within the phone
and through the cellular network. The secure element can
be connected to the application processor either directly (4)
or through the NFC controller (3). Typically, access to the
secure element through pathes (2) and (3) is mutually ex-
clusive and, therefore, those pathes cannot be active at the
same time.

2.1 Card Emulation
There exist several possible options for NFC’s card emu-
lation mode. Emulation can differ in communication stan-
dards, in supported protocol layers, in supported command
sets and in the part of the NFC device that performs the
actual emulation.

Regarding the communication standard, there exist three
possibilities: ISO/IEC 14443 Type A, ISO/IEC 14443 Type
B and FeliCa (JIS X 6319-4). Support for either of these
modes depends on the NFC controller, the secure element
and typically the geographic region. For example, ISO/IEC
14443 Type A and Type B are the prevalent technologies in
Europe while FeliCa is widespread in Japan.

Another difference is the part of the device that performs the
actual emulation. On the one hand, a card can be emulated
in software (on the device’s application processor). On the
other hand, card emulation can be performed by a dedicated
smartcard chip – the secure element.

2.2 Secure Element
A secure element can be a dedicated microchip that is em-
bedded into the NFC device. Such a chip could also be com-
bined in a single package with the NFC controller. Another
possibility is the integration of the secure element functional-
ity in another smartcard/security device that is used within
the NFC device. Such a combined chip can be the UICC
(universal integrated circuit card; often referred to as Sub-
scriber Identity Module/SIM card) or an SD (secure digital)
memory card.

Many secure elements (e.g. NXP’s SmartMX) are standard
smartcard ICs as used for contact and contactless smart-
cards. They share the same hardware and software plat-
forms. The only difference is the interface they provide: In-
stead of (or in addition to) a classic smartcard interface ac-
cording to ISO/IEC 7816-3 (for contact cards) or an antenna
(for contactless cards), the secure element has a direct in-
terface for the connection to the NFC controller (e.g. NFC
Wired Interface (NFC-WI) or Single Wire Protocol (SWP)).

Secure elements feature the same high security standards as
regular smartcards. A secure element provides secure stor-
age, a secure execution environment and hardware-based
support for cryptographic operations. Secure element chips
are protected against various attacks that aim at retrieval
or manipulation of stored data and processed operations.

Smartcard chips, their operating systems and the design pro-
cesses are evaluated and certified according to high security
standards. Examples for such standards are the Common
Criteria protection profiles for smartcard microchips2. Thus,
the secure element fulfills the requirements necessary for se-
curity critical applications like payment and access control.

A major unsolved security issue with smartcards is the re-

2E.g. “Smartcard IC Platform Protection Profile”, Version
1.0, July 2001; “Protection Profile Smart Card IC with
Multi-Application Secure Platform”, Version 2.0, November
2000; “Java CardTM System Protection Profile Collection”,
Version 1.0b, August 2003;“Java CardTM System Protection
Profile Open Configuration”, Version 2.6, April 2010.

Fourth International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
June 18, 2012, Newcastle, UK

Downloaded from 
www.mroland.at



Figure 2: Command flow of software card emulation on BlackBerry 7 platform.

lay attack scenario. “Relay attack” refers to a scenario where
the communication with a smartcard is relayed over longer
distances through an alternative carrier. An attacker could
abuse this to use a victims smartcard in remote places. The
viability of relay attacks on contactless smartcards was first
proven by Hancke [8] by relaying the signaling layer com-
munication between a smartcard and an RFID reader. Kfir
and Wool [11] could significantly improve communication
distances for this scenario, which allows for easier access
to smartcards without the victims knowledge. Roland et
al. [14, 15] revealed that secure elements are not only prone
to attacks through the contactless interface but relay at-
tacks can even be performed through software on a mobile
phone’s application processor. Anderson [1] suggests that
NFC-enabled mobile phones are an ideal platform for per-
forming relay attacks on contactless smartcards. Francis et
al. [6, 7] show that NFC peer-to-peer mode communication
and contactless smartcard communication can be relayed via
Bluetooth and other wireless communication channels by us-
ing two NFC-enabled mobile phones as attack platform.

3. SOFTWARE CARD EMULATION
Software card emulation (or “soft-SE” [7]) is a new approach
to card emulation in NFC-enabled mobile phones. It was in-
troduced to mobile phones by Research In Motion (RIM)
on their BlackBerry platform. Besides support for different
kinds of secure elements, the BlackBerry 7 platform intro-
duces support for emulation of NFC tags and smartcards
through software on the mobile phone’s application proces-
sor [5, 13].

An application can emulate an NFC Forum type 4 tag by
simply specifying an NDEF message that should be stored
on the virtual tag. The type 4 tag protocol is handled au-
tomatically by the BlackBerry system. This mode could be
used to exchange data with another NFC device that oper-
ates in reader/writer mode.

An application can also emulate a full ISO/IEC 14443-4
smartcard. Emulation is possible for both ISO/IEC 14443
Type A and Type B protocol variants. An application can
specify static properties of the emulated smartcard (i.e. the
unique identifier (UID) and the historical bytes for ISO/IEC
14443 Type A) and can exchange protocol data units on
top of the block transmission protocol defined by ISO/IEC
14443-4. (While the API allows applications to freely define

a UID, this feature was not implemented on existing devices
due to security concerns [17].) When an application wants
to act as a contactless smartcard, it registers itself with the
BlackBerry system. As soon as a command is received from
an external RFID/NFC reader, a callback method is exe-
cuted. The received command is passed as a parameter to
the callback method. The application can then process the
command and supply a return value to be returned to the
reader. Fig. 2 depicts the command flow for software card
emulation. Arrows (1) to (4) show the flow of a command
from the RFID/NFC reader to the application’s registered
callback method. Arrows (5) to (8) show the flow of the re-
sponse generated by an application back to the RFID/NFC
reader.

At the moment, BlackBerry mobile phones are the only
devices known to support software card emulation. How-
ever, recent patches [18, 19] to the CyanogenMod aftermar-
ket firmware for Android devices will enable this type of
card emulation on Android devices with NXP’s PN544 NFC
controller.

Besides mobile phones, other devices, like certain NFC read-
ers, can also be used to perform card emulation without a
secure element. An example is the ACS ACR 122U NFC
reader. There also exist dedicated card emulators (e.g. Prox-
mark, OpenPICC, IAIK HF RFID DemoTag).

3.1 Advantages of Software Card Emulation
Card emulation mode is said to be the most promising mode
of NFC [12]. A main reason for this is the revenue expected
from card emulation compared to the revenue of NFC’s other
operating modes. Also many existing payment, ticketing and
access control applications have a stationary reader infras-
tructure with users carrying smartcards/contactless tokens.
Thus, adding the user side (i.e. smartcard/contactless to-
ken functionality) to a mobile phone requires card emulation
mode.

However, while demanded by the NFC community, card em-
ulation and, especially, the secure element are a complicated
terrain. For now, embedded secure elements are usually un-
der control of the handset manufacturer or a trusted service
manager (TSM) who operates the secure elements for them.
With the UICC as a secure element, it is the mobile network
operator (MNO) who controls the secure element.“Already a

Fourth International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
June 18, 2012, Newcastle, UK

Downloaded from 
www.mroland.at



dispute is growing over control of the embedded secure chips
expected to be included in most NFC phones [...]” [3]. So the
first barrier towards access to a secure element will be that
the various secure elements are operated by various differ-
ent parties. The second barrier will be that it seems unlikely
that a secure element operator who already provides a cer-
tain service will allow a competitor’s similar service on their
secure elements: “[...] it’s difficult to imagine a Google Wal-
let and Isis wallet residing on the same phone – especially if
they are anchored to the same secure element” [2]. The third
barrier will be the cost of getting an application onto the
secure element. Besides rental cost for space in the secure
element, applications will most likely need some form of se-
curity certification if they should coexist with other security
critical applications on one secure element.

All those barriers diminish the chances for average devel-
opers (or actually for all but the big players in the mobile
phone and payment sectors) to get their applications onto
the secure element. As a solution to this problem, RIM intro-
duced a software card emulation mode with their BlackBerry
phones. With this mode, any developer can create applica-
tions that use card emulation mode, even without access to
a secure element. This opens development of applications
based on existing stationary reader infrastructures. Thus,
developers can create mobile phone based applications for
access control, payment, public transport ticketing and event
ticketing, where RFID tickets and smartcards are already in
use.

Another advantage is that software card emulation mode
can be used to communicate with NFC devices that do not
(yet) support a full-fledged peer-to-peer mode. For instance,
the Android system only supports Android Beam for peer-
to-peer communication. However, Android Beam – which
is based on Google’s NDEF Push Protocol (NPP) and the
Simple NDEF Exchange Protocol (SNEP) – can only be
used to exchange one message into one direction per touch
of the two NFC mobile phones3. Therefore, software card
emulation can be used as an easy alternative to peer-to-peer
mode for communication between NFC devices. Also many
existing contactless smartcard readers for the PC platform
do not support peer-to-peer mode. Examples are the Reiner
SCT cyberJack RFID basic (used for the new German iden-
tity card) and the HID OMNIKEY 5321. Nevertheless, these
devices can communicate with mobile phones in card emula-
tion mode. Thus, software card emulation mode opens up for
an easy interaction between mobile phones and PC systems
without costs for additional NFC hardware.

A further advantage of software card emulation mode com-
pared to peer-to-peer mode is the software and driver sup-
port for the PC platform. Reader/writer support for con-
tactless smartcards is well standardized with PC/SC and
integrated into most operating systems by default. Even
platforms like Java SE have standardized APIs for access
to contactless smartcards. Support for peer-to-peer mode is

3The ISMB-NPP-JAVA project (http://code.google.com/
p/ismb-npp-java/) shows that this limitation can be over-
come by turning off the initiator’s electromagnetic field be-
tween exchange of each message. However, while this is pos-
sible with dedicate NFC reader devices, many mobile phones
do not allow this.

not that well-established and is only covered by some third
party libraries like libnfc4 and libnfc-llcp5. Besides that, the
protocol stack for NFC peer-to-peer mode,

• application layer protocol (based on NDEF messages)
on top of

• NPP, SNEP (or direct use of another application layer
protocol) on top of

• LLCP (NFC Logical Link Control Protocol) on top of

• NFC-DEP (NFC Data Exchange Protocol, i.e. the low-
level peer-to-peer communication protocol defined by
ISO/IEC 18092),

is rather complex compared to that for reader/writer mode,

• application layer protocol (based on ISO/IEC 7816-4)
on top of

• ISO-DEP (i.e. the communication protocol defined by
ISO/IEC 14443-4).

Overall, software card emulation mode is certainly a great
chance for developers and others than the “big players” to
easily extend to applications beyond simple tagging6.

3.2 Disadvantages and Security Impacts
All these advantages come, however, at a price. Besides some
technical limitations in current implementations of software
card emulation, there is a significant loss in security. Appli-
cations executed on a mobile phone’s application processor
do not benefit from the secure data storage and the trusted
execution environment of a secure element. Unless, of course,
the application processor itself provides some form of trusted
computing technology. Though, this is not the case with
most current mobile phones.

Without secure storage, it becomes difficult for card emu-
lation applications to store sensitive data (e.g. credentials
for access control systems, private signing keys for payment
solutions, tickets ...) Moreover, the lack of a trusted execu-
tion environment could allow for (intentional) interference
by other applications. For instance, recent vulnerabilities of
the Google Wallet allowed an attacker to recover credit card
numbers, account balance, card holder information and even
the wallet’s PIN code, because, even though Google Wallet
has access to a secure element, this data was cached within
the app’s private data storage in the mobile phone mem-
ory [10,16].

Depending on the value of the sensitive data, it might be
okay to take this risk. On the one hand, there is ticketing,

4libnfc (http://www.libnfc.org/) provides, amongst oth-
ers, low-level peer-to-peer communication for a broad range
of NFC readers.
5Part of the nfc-tools project (http://code.google.com/
p/nfc-tools/), libnfc-llcp provides an LLCP (logical link
control protocol) implementation on top of libnfc.
6I.e. using the NFC device in reader/writer mode together
with NFC tags.

Fourth International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
June 18, 2012, Newcastle, UK

Downloaded from 
www.mroland.at



Figure 3: Credit card transaction with “virtual” card stored in a remote location.

where a single trip ticket for public transport or an entrance
ticket for a theme park may be worth the risk. On the other
hand, there is payment and access control. A credit card or
the keys for access to a building are usually too sensitive to
be stored on mobile phone memory from where they could
potentially be skimmed.

Nevertheless, even with software card emulation, security
critical applications are possible to some extent. The key is
to store a “virtual card” in a secure remote location and use
the mobile phone only as a proxy to access this card. Fig. 3
outlines this kind of online card emulation system for a vir-
tual credit card. Commands received from the point-of-sale
(POS) terminal are forwarded to a virtual credit card that
is stored on a remote server. The response received from
the virtual credit card is routed back to the POS terminal.
Access to the virtual credit card must be secured against hi-
jacking of ongoing communication and against unauthorized
use of the credit card – e.g. by an encrypted and authenti-
cated tunnel, and by a password entered by the user before
use. Given that many mobile phones are prone to attacks
which allow retrieval and manipulation of private informa-
tion stored inside apps, creating a secure tunnel that cannot
be hijacked by other apps can be a difficult task. Besides the
security issues introduced by the secure connection to a re-
mote service, this scenario requires a stable Internet connec-
tion during the whole transaction, which might not always
be the case.

Vulnerability of data used for software card emulation ap-
plications is not the only security impact. Another problem
that gains increased importance due to software card emula-
tion is the use of mobile phones as attack platform. Research
by Francis et al. [6] shows that two NFC-enabled mobile
phones can be used to relay peer-to-peer mode communi-
cation over long distances. Similar relay attacks are pos-
sible with contactless smartcards (cf. Hancke [8], Kfir and
Wool [11], Hancke et al. [9]). In the past, an attacker had to
prepare special equipment (e.g. a card emulator that proxies
smartcard signals between an RFID/NFC reader and the re-
lay carrier.) Ready-made kits exist for this purpose, however,
these kits do not feature the form factor expected for NFC
and contactless transactions (i.e. a plastic card or a mobile
phone). A mobile phone that supports card software emula-
tion mode has the ideal form factor and, furthermore, has
various network interfaces (Bluetooth, WiFi, GSM, UMTS

...) to establish a relay channel. Francis et al. [7] prove that a
contactless smartcard can easily be relayed using two NFC-
enabled mobile phones: One in reader/writer mode that acts
as a proxy between the smartcard and the relay channel. The
other in software card emulation mode that acts as a proxy
between the relay channel and the RFID/NFC reader (e.g.
point-of-sale terminal). Roland et al. [15] even demonstrate
that pure software on a victim’s mobile phone is sufficient to
proxy communication between the secure element and the
relay channel.

Further disadvantages are the technical and security related
limitations of software card emulation. With NXP’s NFC
controllers, software-emulated smartcards are only allowed
to use a certain set of UIDs (specifically only those reserved
for random UIDs). For the BlackBerry platform, a possibil-
ity to specify an arbitrary UID is included into the API, but
this feature has been replaced on existing devices by a ran-
domly generated UID due to security concerns [17]. While
this limitation inhibits use of software card emulation with
virtually any UID-based application, it also prevents card
cloning attacks on purely UID-based authentication systems
(e.g. certain access control systems).

Also, BlackBerry’s software card emulation mode, as well as
the software card emulation that has recently been added
to the CyanogenMod aftermarket firmware for Android de-
vices, only support emulation of ISO/IEC 14443-4 smart-
cards. Proprietary systems that operate on lower protocol
layers (like NXP’s MIFARE Classic) cannot be emulated.
Thus, software card emulation is not usable for several legacy
RFID systems.

4. CONCLUSION
This paper evaluates the advantages and disadvantages of
software card emulation. It is shown that software card emu-
lation provides a great opportunity to developers as it breaks
the barriers that exist with secure element based solutions.
Software card emulation allows for easy integration of NFC-
enabled mobile phones into existing contactless smartcard
systems. It also has benefits over peer-to-peer mode as de-
vices in card emulation mode can easily communicate with
devices in reader/writer mode. Reader/writer mode is more
established than peer-to-peer mode. These benefits come at
the price of security. It becomes more difficult to protect the

Fourth International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
June 18, 2012, Newcastle, UK

Downloaded from 
www.mroland.at



content of emulated cards. Moreover, software card emula-
tion mode turns mobile phones into an ideal platform for
conducting relay attacks on smartcards and other card em-
ulation applications. Finally, limitations placed by handset
and chipset manufacturers restrict the use of software card
emulation for certain applications. Yet, many applications
of software card emulation could be implemented with peer-
to-peer mode. However, this would often require significant
upgrades to existing infrastructures.

In my opinion, software card emulation mode is not neces-
sary for NFC devices, as most of its applications could also
use peer-to-peer mode, which was specifically created for
easy communication between any NFC devices. Neverthe-
less, software card emulation is supported by current hard-
ware. Just because developers may be tempted to create ap-
plications without sufficient security and just because this
functionality could be abused for malicious use-cases, devel-
opers should not be barred from software card emulation.
Security of applications should not be achieved by restrict-
ing technology that can potentially be used for attacks but
by increasing robustness against attacks. After all, as seen
with the patches to CyanogenMod, completely sealing off
this functionality from beeing used is impossible anyways.

5. ACKNOWLEDGMENTS
This work is part of the project “4EMOBILITY” within the
EU programme “Regionale Wettbewerbsfähigkeit OÖ 2007–
2013 (Regio 13)” funded by the European regional devel-
opment fund (ERDF) and the Province of Upper Austria
(Land Oberösterreich).

6. REFERENCES
[1] R. Anderson. Position Statement in RFID S&P Panel:

RFID and the Middleman. In Financial Cryptography
and Data Security, volume 4886/2007 of LNCS, pages
46–49. Springer Berlin Heidelberg, 2007.

[2] D. Balaban. Telcos Close Ranks as Google Threat
Looms. NFC Times Blog, July 2011.
http://www.nfctimes.com/blog/dan-balaban/

telcos-close-ranks-google-threat-looms.

[3] D. Balaban. With Launch of Google Wallet, the
Wallet War Begins. NFC Times Blog, June 2011.
http://www.nfctimes.com/blog/dan-balaban/

launch-google-wallet-wallet-war-begins.

[4] E. Chen. NFC: Short range, long potential. News
Article, http://www.assaabloyfuturelab.com/
FutureLab/Templates/Page2Cols____1905.aspx,
Aug. 2007.

[5] S. Clark. RIM releases BlackBerry NFC APIs. Near
Field Communications World, May 2011.
http://www.nfcworld.com/2011/05/31/37778/rim-

releases-blackberry-nfc-apis/.

[6] L. Francis, G. P. Hancke, K. E. Mayes, and
K. Markantonakis. Practical NFC Peer-to-Peer Relay
Attack Using Mobile Phones. In Radio Frequency
Identification: Security and Privacy Issues, volume
6370/2010 of LNCS, pages 35–49. Springer Berlin
Heidelberg, 2010.

[7] L. Francis, G. P. Hancke, K. E. Mayes, and
K. Markantonakis. Practical Relay Attack on
Contactless Transactions by Using NFC Mobile

Phones. Cryptology ePrint Archive, Report 2011/618,
2011. http://eprint.iacr.org/2011/618.

[8] G. P. Hancke. A Practical Relay Attack on ISO 14443
Proximity Cards, Jan. 2005. http:
//www.rfidblog.org.uk/hancke-rfidrelay.pdf.

[9] G. P. Hancke, K. E. Mayes, and K. Markantonakis.
Confidence in smart token proximity: Relay attacks
revisited. Computers & Security, 28(7):615–627, 2009.

[10] A. Hoog. Forensic security analysis of Google Wallet.
viaForensics Mobile Security Blog, Dec. 2011. https:
//viaforensics.com/mobile-security/forensics-

security-analysis-google-wallet.html.

[11] Z. Kfir and A. Wool. Picking Virtual Pockets using
Relay Attacks on Contactless Smartcard. In
Proceedings of the First International Conference on
Security and Privacy for Emerging Areas in
Communications Networks (SECURECOMM’05),
pages 47–58, Sept. 2005.

[12] K. Ok, V. Coskun, M. N. Aydin, and B. Ozdenizci.
Current benefits and future directions of NFC
services. In Proceedings of the 2010 International
Conference on Education and Management Technology
(ICEMT), pages 334–338, Nov. 2010.

[13] RIM. Blackberry API 7.0.0: Package
net.rim.device.api.io.nfc.emulation, 2011.
http://www.blackberry.com/developers/docs/7.0.

0api/net/rim/device/api/io/nfc/emulation/

package-summary.html.

[14] M. Roland, J. Langer, and J. Scharinger. Practical
Attack Scenarios on Secure Element-enabled Mobile
Devices. In Proceedings of the Fourth International
Workshop on Near Field Communication (NFC 2012),
pages 19–24, Helsinki, Finland, Mar. 2012.

[15] M. Roland, J. Langer, and J. Scharinger. Relay
Attacks on Secure Element-enabled Mobile Devices:
Virtual Pickpocketing Revisited. IFIP International
Information Security and Privacy Conference (pending
publication), June 2012.

[16] J. Rubin. Google Wallet Security: PIN Exposure
Vulnerability. zveloBLOG, Feb. 2012.
https://zvelo.com/blog/entry/google-wallet-

security-pin-exposure-vulnerability.

[17] M. Woolley. Response to thread “UID for NFC Mifare
Tag emulation” on BlackBerry Support Community
Forums.
http://supportforums.blackberry.com/t5/Java-

Development/UID-for-NFC-Mifare-Tag-

emulation/m-p/1575809, Feb. 2012.

[18] D. Yeager. Added NFC Reader support for two new
tag types: ISO PCD type A and ISO PCD type B.
https://github.com/CyanogenMod/android_

packages_apps_Nfc/commit/

d41edfd794d4d0fedd91d561114308f0d5f83878, Jan.
2012.

[19] D. Yeager. Added NFC Reader support for two new
tag types: ISO PCD type A and ISO PCD type B.
https://github.com/CyanogenMod/android_

external_libnfc-nxp/commit/

34f13082c2e78d1770e98b4ed61f446beeb03d88, Jan.
2012.

Fourth International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU)
June 18, 2012, Newcastle, UK

Downloaded from 
www.mroland.at




