
P
er

so
na

l u
se

 o
f t

hi
s 

m
at

er
ia

l i
s 

pe
rm

itt
ed

. P
er

m
is

si
on

 fr
om

 IE
E

E
 m

us
t b

e 
ob

ta
in

ed
 fo

r a
ll 

ot
he

r u
se

s,
 in

 a
ny

 c
ur

re
nt

 o
r f

ut
ur

e 
m

ed
ia

, i
nc

lu
di

ng
 re

pr
in

tin
g/

re
pu

bl
is

hi
ng

 th
is

 m
at

er
ia

l f
or

 
ad

ve
rti

si
ng

 o
r p

ro
m

ot
io

na
l p

ur
po

se
s,

 c
re

at
in

g 
ne

w
 c

ol
le

ct
iv

e 
w

or
ks

, f
or

 re
sa

le
 o

r r
ed

is
tri

bu
tio

n 
to

 s
er

ve
rs

 o
r l

is
ts

, o
r r

eu
se

 o
f a

ny
 c

op
yr

ig
ht

ed
 c

om
po

ne
nt

 o
f t

hi
s 

w
or

k 
in

 o
th

er
 w

or
ks

.

Practical Attack Scenarios on Secure
Element-enabled Mobile Devices

Michael Roland, Josef Langer
NFC Research Lab Hagenberg

University of Applied Sciences Upper Austria
{michael.roland, josef.langer}@fh-hagenberg.at

Josef Scharinger
Department of Computational Perception

Johannes Kepler University Linz
josef.scharinger@jku.at

Abstract—Near Field Communication’s card emulation mode is
a way to put virtual smartcards into mobile phones. A recently
launched application is Google Wallet. Google Wallet turns a
phone into a credit card, a prepaid card and a tool to collect gift
certificates and discounts. Card emulation mode uses dedicated
smartcard chips, which are considered to fulfill high security
standards. Therefore, card emulation mode is also considered
to be safe and secure. However, an NFC-enabled mobile phone
introduces a significantly different threat vector. Especially a
mobile phone’s permanent connectivity to a global network and the
possibility to install arbitrary applications onto smart phones open
up for several new attack scenarios. This paper gives an overview
of the new risks imposed by mobile connectivity and untrusted
mobile phone applications. The various APIs for secure element
access on different mobile phone platforms and their access control
mechanisms are analyzed. The security aspects of mobile phones
are explained. Finally, two practical attack scenarios, a method to
perform a denial of service (DoS) attack against a secure element
and a method to remotely use the applications on a victims secure
element without the victim’s knowledge, are highlighted.

I. INTRODUCTION

Near Field Communication (NFC) is a contactless communi-
cation technology standardized in ECMA-340 and ECMA-352.
It is an advancement of inductively coupled proximity Radio
Frequency Identification (RFID) technology and smartcard tech-
nology.

NFC has three operating modes: peer-to-peer mode, reader/
writer mode and card emulation mode. The peer-to-peer mode
is an operating mode specific to NFC and allows two NFC de-
vices to communicate directly with each other. In reader/writer
mode, NFC devices can access contactless smartcards, RFID
transponders and NFC tags. In card emulation mode, an NFC
device emulates a contactless smartcard and, thus, is able to
communicate with existing RFID readers.

Technically, the card emulation mode could be handled by
an NFC device in several different ways. The most notable
difference is the communication standard. An NFC device could
emulate one of either ISO/IEC 14443 Type A, ISO/IEC 14443
Type B or FeliCa (JIS X 6319-4). Support for either of these
communication technologies is limited by the NFC chipset and,
typically, also depends on the geographic region.

Another difference in handling the card emulation is the part
of the device that performs the actual emulation. On the one
hand, a card can be emulated in software (e.g. on the device’s
application processor). On the other hand, card emulation can
be performed by a dedicated smartcard chip – a so-called secure

element (SE). Such a chip can be a dedicated secure element
IC (integrated circuit) that is embedded into the NFC device.
Another possibility is the combination of the secure element
functionality with another smartcard/security device that is used
within the NFC device – like a UICC1 (universal integrated
circuit card) or an SD (secure digital) memory card.

Typical use-cases for card emulation are security critical
applications like access control and payment. Therefore, em-
ulation by software on a non-secure application processor is
not widely used. As of today, only some dedicated NFC reader
devices – like ACS’s ACR 122U – and only a small number
of NFC-enabled mobile phones – specifically those equipped
with RIM’s BlackBerry 7 operating system [1], [2] – support
software card emulation.

The majority of mobile NFC devices use dedicated smartcard
chips for card emulation. Examples are the Nokia 6131, the
Nokia 6212, the Samsung GT-S5230N (“Player One”) and
the Samsung Nexus S. The Nokia 6131 and the Nokia 6212
have an embedded secure element. The Samsung GT-S5230N
uses an SWP-enabled (Single Wire Protocol) UICC as secure
element and the Samsung Nexus S has both, an embedded
secure element and support for an SWP-enabled UICC. Only
some recent NFC phones developed by Nokia have no support
for card emulation at all [3].

Typical secure elements – like NXP’s SmartMX – are
standard smartcard ICs as used for contact and contactless
smartcards. The only difference is the interface they provide:
Instead of a smartcard interface according to ISO/IEC 7816-3
(for contact cards) or an antenna (for contactless cards), the
secure element has either an NFC Wired Interface (NFC-WI)
or a Single Wire Protocol (SWP) interface for the connection
to the NFC controller.

As secure elements have the same hardware and software
platforms as regular smartcards, they also share the same
security standards. A secure element provides secure storage, a
secure execution environment and hardware-based support for
cryptographic operations. The IC is protected against various
attacks that aim at retrieval or manipulation of stored data
and processed operations. Smartcard chips and their design
process are usually evaluated and certified according to high
security standards – like those defined by the Common Criteria

1The UICC is often referred to as Subscriber Identity Module (SIM) card.

DOI 10.1109/NFC.2012.10 
© 2012 IEEE

2012 4th International Workshop on Near Field Communication

19 Downloaded from 
www.mroland.at

https://dx.doi.org/10.1109/NFC.2012.10
https://www.mroland.at/


protection profiles for smartcard ICs2. The same applies to
their operating systems3. Thus, the secure element fulfills the
requirements necessary for security critical applications like
access control and even payment.

Smartcards by themselves are considered safe and secure but
their integration into NFC-enabled mobile phones significantly
changes the presuppositions. A fundamental difference is, for
example, that a mobile phone is permanently connected to a
global network, while a regular smartcard is typically isolated
from the surrounding world when it is not in use.

In this publication we evaluate the impact of embedding
secure elements into NFC-enabled mobile phones. Starting with
an introduction to smartcards, we investigate the additional
risks imposed by mobile connectivity and untrusted mobile
phone applications. We, therefore, take a close look at the APIs
for secure element access provided by different mobile phone
systems. We analyze the access control mechanisms used to
protect these APIs. Finally, we explain two practical attack
scenarios against secure elements and their applications. One
is a method to perform a denial of service (DoS) attack against
a secure element. The other is a method to remotely use the
applications on a victims secure element without the victim’s
knowledge.

II. SMARTCARDS

Smartcards are used, for example, as credit cards, access
control cards, signature cards or electronic passports. Such
application specific smartcards may use customized operating
systems, and their application software is usually programmed
into a read-only memory during the manufacturing process.
Today, however, there also exist generic smartcard platforms
which can be loaded with various applications. A single card
can even contain multiple applications at the same time.

A. Communication Protocol

Contact smartcards, as well as contactless smartcards, use the
same application level protocol which is defined in ISO/IEC
7816-4. Command and response pairs are called APDUs (ap-
plication protocol data units). Commands are always sent from
the reader to the card while responses are always sent from the
card to the reader.

B. Java Card and GlobalPlatform

A standardized framework for multi-application smartcards is
the Java Card platform. Java Card operating systems provide a
common set of application programming interfaces (APIs) and
a standardized runtime environment. This allows development
of applications independent of the actual smartcard hardware
and independent of the actual operating system.

Besides a common API, an application provider also needs
a standardized interface to manage a smartcard’s lifecycle
and application software. “The GlobalPlatform architecture is

2E.g. “Smartcard IC Platform Protection Profile”, Version 1.0, July 2001 and
“Protection Profile Smart Card IC with Multi-Application Secure Platform”,
Version 2.0, November 2000.

3E.g. “Java CardTM System Protection Profile Collection”, Version 1.0b,
August 2003 and “Java CardTM System Protection Profile Open Configuration”,
Version 2.6, April 2010.

designed to provide card issuers with the system management
architecture for managing these smart cards” [4]. GlobalPlat-
form specifies interfaces, mechanisms and commands to allow
secure smartcard application management. The management
facilities are independent of the actual smartcard hardware and
of the actual operating system, and are, thus, interoperable.

Most current secure elements for NFC-enabled mobile de-
vices have a Java Card operating system and allow GlobalPlat-
form compliant card and application management. An example
for a Java Card and GlobalPlatform compliant operating system
is JCOP (Java Card Open Platform).

A GlobalPlatform compliant smartcard contains a Card Man-
ager, which is the central component for card administration. It
is responsible for managing the whole life cycle of a card and
its applications (card content).

GlobalPlatform defines the following states for the life cycle
of a smartcard [4]: OP READY, INITIALIZED, SECURED,
CARD LOCKED, and TERMINATED. OP READY is the
card’s initial state after production. During initialization with
initial keys for card management the life cycle state irreversibly
traverses from OP READY via INITIALIZED to SECURED.
In the state SECURED, the card is ready for issuance. When the
card is in the state CARD LOCKED, applications on the card
can be used, but card content can no longer be managed (i.e. no
applications can be added or removed). This state is reversible
to SECURED. TERMINATED is similar to CARD LOCKED,
but transitions to it are irreversible. Thus, once a card reached
this state, management of card life cycle and card content are
no longer possible. As this state is permanent it is intended for
cases where a severe security threat was detected or where a
card has expired [4].

Many secure elements traverse to TERMINATED states for
security reasons if the number of failed authentication attempts
for card management reaches a certain threshold. For instance,
the secure elements included in the Nokia 6131 and the Nokia
6212 mobile phones have a threshold of ten successive authen-
tication failures [5].

III. APIS FOR SECURE ELEMENT ACCESS

The secure element in an NFC mobile phone can be accessed
from two sides. In external mode, the secure element emulates
a contactless smartcard to external RFID/NFC hardware. In
internal mode, the secure element is accessible from mobile
phone applications. The various mobile phone platforms define
different APIs and access restrictions for the internal mode.

A. JSR 177

The Security and Trust Services API (SATSA, JSR 177
[6]) specifies a number of Java programming interfaces for
integrating secure elements into Java applications. Specifically
the sub-package SATSA-APDU is designed for APDU-based
communication with secure elements. JSR 177 is defined for
Java ME (Java Platform, Micro Edition), which is a Java plat-
form specifically designed for devices with limited processing
and storage capabilities – like mobile phones.

In today’s Java ME capable devices SATSA-APDU is mainly
used for access to the mobile phone’s UICC. An interface
APDUConnection is provided for creating connections to

2012 4th International Workshop on Near Field Communication

20 Downloaded from 
www.mroland.at



specific card applications (applets) on the secure element. Con-
nections are opened based on an applet’s application identifier
(AID). The interface has methods for verification of PIN codes,
for retrieval of the card’s answer to reset (ATR) and for
exchange of arbitrary APDUs with the selected applet.

Access to the SATSA-APDU API is protected by Java ME
permissions. The permissions for smartcard access are only
granted to signed applications. Applications in the manufacturer
domain and the operator domain are automatically granted
the permission while applications in the trusted third party
domain may require additional user interaction in order for the
permissions to be granted.

As an addition to this basic access control scheme, the
SATSA specification recommends a more sophisticated access
control model in order to protect the secure element from ma-
licious mobile phone applications. The Recommended Security
Element Access Control [6] defines two mechanisms for fine-
grained access control to secure element applications. The first
mechanism extends the security domains of the Java ME device
in that only applications signed with certificates that chain back
to a root certificate provided by the secure element are granted
access. The second mechanism is an access control scheme
based on access control lists (ACLs). The secure element as a
whole and each applet can have their own access control entries
(ACEs). The access control scheme grants access based on the
APDU header information and the mobile phone application’s
security domain (manufacturer, operator or trusted third party).

The SATSA specification makes some important assumptions
for the access control model to be secure: Mobile phone
applications are bound by all secure element access restrictions
and both the mobile phone application and the applet trust the
mobile device platform [6].

B. Nokia’s Extensions to JSR 257

The Contactless Communication API (JSR 257 [7]) specifies
a Java programming interface for access to contactless targets
(RFID/NFC tags and visual tags). Consequently, this API
provides access to NFC’s reader/writer mode. For their first
NFC phones (specifically Nokia 6131 and Nokia 6212), Nokia
developed some extensions to the Contactless Communication
API in order to support more features of NFC. Besides support
for further RFID tag types and for some limited peer-to-peer
functionality, Nokia’s extensions to JSR 257 also provide access
to the embedded secure element of their mobile phones.

Both JSR 177 and JSR 257 provide access to smartcards.
While JSR 177 is intended for access of specific applets on
secure elements connected to or integrated into a mobile device,
JSR 257 is intended for access to any contactless smartcards that
are accessed through a device’s RFID/NFC reader. JSR 257
provides an interface ISO14443Connection for creating
connections to contactless smartcards. The interface has a single
method for exchange of arbitrary APDUs with the card. As
opposed to JSR 177 this connection is not limited to one specific
applet.

With Nokia’s extensions a connection can also be established
to the phone’s embedded secure element. This compensates for
the missing support of access to the embedded secure element
through JSR 177 on their devices.

Opening an ISO14443Connection is subject to protec-
tion by Java ME permissions. On Nokia’s mobile phones,
however, the permission for contactless smartcard access is
granted to any application by default. Even applications in the
untrusted third party domain may freely access this API. For
secure element access through the API extensions an additional
security scheme has been introduced. This scheme requires that
an application is in the manufacturer, the operator or the trusted
third party security domain. Therefore, only applications that
are signed with trusted certificates are granted access to the
secure element.

C. BlackBerry 7

BlackBerry uses an interface similar to SATSA-APDU for
secure element communication. Additional helper classes pro-
vide information on the available secure elements and allow for
easy instantiation of APDUConnection objects.

Access to the secure element API is restricted to applications
that are signed with BlackBerry Java code signing keys. Code
signing keys are provided to developers free of charge but
registration with Research In Motion (RIM) is required.

D. Android

While Android-based NFC-enabled mobile phones, like the
Nexus S, have an embedded secure element and also support
a UICC-based secure element, Android still does not have a
public API for secure element access. Since Android 2.3.4
access to the embedded secure element is possible through an
API called com.android.nfc_extras, but this interface
is not included in the public software development kit (SDK).

This API contains two classes: NfcAdapterExtras and
NfcExecutionEnvironment. NfcAdapterExtras is
used to enable and disable external card emulation and to re-
trieve an instance of the secure element’s NfcExecutionEn-
vironment class. NfcExecutionEnvironment is used
to exchange APDUs with the embedded secure element.

In Android 2.3.4 the NFC-Extras API could be accessed
by any application that held the permission to use NFC.
In later versions this has been changed to a special per-
mission named com.android.nfc.permission.NFC-
EE_ADMIN. This special permission is only granted to appli-
cations which are signed with the same certificate as the NFC
system service. Consequently, access to the secure element is
restricted to applications trusted by the manufacturer/provider
of the NFC system service.

E. SEEK for Android

The SEEK for Android project4 provides a standardized
smartcard API for the Android platform. The API is compliant
to the Open Mobile API defined by SIMalliance. This API
is intended to provide access to any kind of secure element
available in a mobile phone.

SEEK for Android defines a sophisticated security scheme [8]
to prevent smartcard access from unauthorized applications. The
scheme is similar to JSR 177’s Recommended Security Element

4At the moment SEEK for Android is only a proposed solution and is not
integrated into the Android system release.

2012 4th International Workshop on Near Field Communication

21 Downloaded from 
www.mroland.at



Table I
COMPARISON OF SECURE ELEMENT API ACCESS CONTROL

JS
R

17
7

JS
R

25
7

ex
t.

B
la

ck
B

er
ry

7

A
nd

ro
id

2.
3.

4

A
nd

ro
id

2.
3.

5+

SE
E

K

Valid application certificate • • • • • •

Trusted application certificate • • • • •

App. cert. matches applet’s policy • •

Manufacturer only •

APDU filter • •

Access Control. An access control enforcer (ACE) reads an
access policy from an access control applet (ACA) on the secure
element. This policy defines access rules based on an applet’s
AID and an Android application’s signing certificate. Addition-
ally, access can be limited based on APDU header information.
While the access control policy is stored and managed on the
secure element, the ACE is part of the smartcard service on the
mobile phone. Consequently, the policy is only enforced when
the SEEK smartcard API is used to access the secure element.

F. Comparison of API Access

The examined programming interfaces have diverging access
control mechanisms. Table I shows a comparison of these
mechanisms. All APIs require an application to be signed with a
valid code-signing certificate. On Android 2.3.4 this is the only
requirement to request the permission for secure element access.
The other APIs additionally require the code-signing certificate
to be trusted by the operating system. On Android 2.3.5 and
later this trust is established by comparing the certificates of the
application and the NFC service. Only if those were created
with the same signing-keys the application is granted access.
Thus, only the system manufacturer can grant this permission to
an application. With JSR 257 extensions any valid code-signing
certificate can be used. For the BlackBerry 7 API, special code-
signing keys, provided by the device manufacturer on request,
are necessary. JSR 177 and SEEK for Android have the most
sophisticated access control. Both APIs allow the definition of
access control policies that consider specific applets, the mobile
phone application’s certificate, and specific APDUs.

Yet, all APIs assume that the underlying operating system
and the mobile phone hardware can be trusted. As a conse-
quence, the secure element may not be sufficiently protected if
an application can bypass security measures of the operating
system.

IV. RELATED WORK AND DISCUSSION

A. Privilege Escalation and Malicious Software

For many mobile phone platforms there exist methods to
circumvent security measures. Popular techniques used on many
smart phones are “jail breaking” and “rooting”. Jail breaking
refers to escaping the restrictions imposed by the operating
system, so that an application can access resources it usually
could not access. Rooting refers to an even sever scenario

where the user or an application gains full access to the whole
system. Both methods are often used intentionally by device
owners/users to circumvent digital rights management or to gain
“improved” control over a device.

However, similar exploits can be integrated in virtually any
application. That way an application could elevate its permis-
sions without the user’s knowledge. Intentional jail breaking
and rooting by users could even open further vulnerabilities
that might be abused to gain access to restricted resources.

Lately the topic of mobile phone security experiences signif-
icantly increasing awareness. Recent research activities include
the assessment of vulnerabilities and threats and the uncovering
of actual attack scenarios.

Jeon et al. [9] analyzed the vulnerabilities and threats in smart
phone security. They identified vulnerabilities caused by imple-
mentation errors, incompatibilities, user unawareness, improper
configuration, social engineering, loss of smart phones and a
smart phone’s interaction with its environment. While smart
phones’ connectivity features (internet, wireless networks...)
make them “useful and most popular”, these same features open
up various paths for intruders [9]. The threats identified by Jeon
et al. comprise malware, attacks through (wireless) networks,
denial of service, break-in attacks, malfunction, phishing, loss
of devices and platform alteration.

Verdult and Kooman [10] describe a method to inject mali-
cious software into Nokia’s NFC-enabled S40 phones. Based
on their method, an attacker can use a combination of NFC
and Bluetooth to install software on a victim’s phone. Due to
an issue with Nokia’s proprietary PC Suite interface – which
is exposed through Bluetooth – an application’s privileges can
be elevated into the operator or the manufacturer domain [10].
Exploit code is even available on the internet5.

Davi et al. [11] investigated the security model of the Android
platform. Android’s security mechanism consists of a combi-
nation of discretionary access control for file system access,
sandboxing for application execution, mandatory access control
for inter-component communication, component encapsulation
and application signing. They state that “Android does not deal
with transitive privilege usage, which allows applications to
bypass restrictions imposed by their sandboxes.” Consequently,
an application with lower privileges could potentially access an
application with higher privileges in such a way, that it could
use these higher privileges for its own purposes.

Höbarth and Mayrhofer [12] introduce a framework for the
Android platform that can use arbitrary exploits to achieve
permanent privilege escalation. Based on any existing or future
exploit that gains temporary root level privileges their frame-
work modifies the system in such a way that these root level
privileges are permanently retained.

Based on such frameworks attackers have an easy platform
to integrate the newest exploit code into their malware applica-
tions. According to Kaspersky Lab’s monthly malware statistics
[13] the trend towards threats and malware for Android (and
mobile platforms in general) has dramatically increased within
the last year. Therefore, it seems unlikely that this trend will
be interrupted any time soon.

5http://code.google.com/p/nokicert/

2012 4th International Workshop on Near Field Communication

22 Downloaded from 
www.mroland.at



As a result, software-based protection of the secure element
APIs is likely to be circumvented. On Nokia’s NFC-enabled
S40 phones, the restrictions of the JSR 257 extensions can
be completely avoided. The same applies to the basic access
control of JSR 177. We also assume that there will continue to
be new privilege escalation exploits for the Android platform
in the future.

B. Attacks on Contactless Smartcards

In 2005, Hancke [14] first presented a successful relay
attack against ISO/IEC 14443 smartcards. His system directly
transmitted the bits (digital information) of the data link layer
between two UHF transceivers. The relay system could bridge
a distance of up to 50 meters but had significant timing issues
during anti-collision of multiple cards [14]. Hancke explains
that even cryptographic protocols for confidentiality, authenti-
cation and integrity have no influence on the possibility of relay
attacks.

Kfir and Wool [15] describe a similar system. They also show
that the relay device used to access the victims card can be up
to 50 centimeters away from the card when using additional
amplification and filtering.

As existing cryptographic protocols on the application layer
cannot prevent relay attacks, several methods have been iden-
tified to prevent or hinder relay attacks [14]–[16]:

1) The card’s radio frequency interface can be shielded with
a Faraday cage when not in use.

2) The card could contain additional circuitry for physical
activation and deactivation.

3) Additional passwords or PIN codes could be used for
two-factor authentication.

4) Distance bounding protocols can be used on fast channels
to determine the actual distance between the card and the
reader.

Other measures – like measurement of command delays
to detect additional delays induced by relay channels – have
been identified as not useful. For instance, Hancke et al. [16]
conclude that the timing constraints of ISO/IEC 14443 are too
loose to provide adequate protection against relay attacks.

Our analysis of the proposed methods reveals that not all of
them can be applied to internal or external card emulation:

1) Shielding with a Faraday cage is only possible for external
card emulation. For internal card emulation the equivalent
of shielding is the API access policy, which we showed
to have weaknesses on some platforms.

2) Physical activation and deactivation of card emulation
(or actually the secure element) would be possible for
both external and internal mode. For instance, the Nokia
NFC phones require the user to explicitly allow external
card emulation. On the Android platform external card
emulation can also be enabled and disabled through
software. However, none of these systems allow physical
deactivation (e.g. by means of a button) of internal card
emulation.

3) We assume that two-factor authentication can reliably
prevent relay attacks as long as the PIN codes are entered
on the reader side. If they are entered on the mobile

phone, an attacker might be able to monitor and reuse
previously entered PIN codes. However, at the moment
many access control systems and payment solutions do
not require PIN codes for contactless transactions.

4) Distance bounding protocols would require an additional
fast communication channel (e.g. ultra-wideband [16]).
Such a channel is neither defined in current NFC stan-
dards nor available in current NFC chipsets.

V. NEW ATTACK SCENARIOS

Our research on related work revealed that contactless smart-
cards are vulnerable to several types of attack. Besides the relay
attack scenario, other scenarios – like jamming and destruction
with electromagnetic waves or interception of radio signals – are
possible. All these attack scenarios and their proposed solutions
also apply to external card emulation.

However, none of these research papers cover the effects of
card emulation’s internal mode in a mobile phone environment.
Above, we showed that secure element APIs are not adequately
protected on some mobile phone platforms. Therefore, based
on the assumption of unrestricted access to the secure ele-
ment’s internal mode, we analyzed possible attack scenarios.
We focused on two classes of attack: denial of service and
relay of communication. Based on this analysis, we found two
new practical attacks that could be applied to the existing NFC-
enabled mobile phones Nokia 6131, Nokia 6212 (both with the
latest firmware) and Samsung Nexus S (with Android 2.3.4).

A. Denial of Service (DoS)

The first attack scenario is a denial of service attack. With
current embedded secure elements, the card is put into TER-
MINATED state after ten successive authentication failures for
card management. Once the card is in TERMINATED state,
all installed applets will continue to be available but card
management is no longer possible. As a result, applets cannot
be installed or removed.

An authentication attempt to the card manager (also re-
ferred to as issuer security domain) consists of a sequence
of three APDU commands: SELECT (issuer security domain),
INITIALIZE UPDATE, and EXTERNAL AUTHENTICATE.
For an embedded secure element, card management must be
available through the secure element API. Otherwise, over-
the-air management of the secure element and its applications
would not be possible. As a consequence, every application with
access to the secure element API can perform an authentication
attempt. Malicious code for permanently locking the secure el-
ement could be injected into any (harmless looking) application
(e.g. a game).

We consider this a critical problem as a permanently locked
(TERMINATED) embedded secure element will render the
NFC device unusable for card emulation applications. This may
lead to a significant decrease in reputation and user satisfaction.
Moreover, it might result in costly product recalls.

B. Relay Attack

“If a contactless card could be read while in a pocket, purse
or wallet, a thief might be able to engage in the act of digital

2012 4th International Workshop on Near Field Communication

23 Downloaded from 
www.mroland.at



pickpocketing while standing next to or merely walking past the
victim” (Hancke [14]).

This type of virtual pickpocketing becomes even easier on a
secure element-enabled mobile phone. Instead of being close-
by to victim’s phone, the attacker simply needs to install an
application onto the victim’s mobile phone. As with the denial
of service attack, relevant exploit code could be packed into
virtually any application.

Our proposed relay attack scenario consists of a relay ap-
plication on the victim’s mobile phone. This application waits
for APDU commands on a network socket and forwards these
APDUs to the secure element. The responses are then sent back
through the network socket. On the other end of the network
socket a card emulator forwards the APDU commands (and
responses) from (and to) a smartcard reader. That smartcard
reader could, for instance, be part of an access control system
or a point-of-sale terminal.

In comparison to existing relay scenarios, where bits are
relayed at the data link layer, our attack scenario relays com-
mand and response packets (APDUs) at the application layer.
Due to this high protocol level, there are practically no timing
constraints on the delay through the relay channel. Therefore,
Bluetooth, Wi-Fi, or even the mobile phone network could be
used as a relay channel.

Any device that supports software card emulation can be
used as a card emulator. For example, ACS’s ACR 122U NFC
reader and the BlackBerry NFC mobile phones support card
emulation on APDU level. Especially a BlackBerry mobile
phone seems to be an ideal card emulator platform. It not only
has the same form factor that is expected for NFC contactless
transactions (i.e. a mobile phone), but it also has the same
network connectivity as the attack target (i.e. Bluetooth, Wi-Fi,
mobile phone network). Thus, it would be possible to directly
relay the smartcard communication between the victim’s secure
element and a BlackBerry mobile phone. At a point-of-sale
or an access control gate, nobody would suspect that the
communication is actually relayed to a remote device.

VI. CONCLUSION

We analyzed several available APIs for secure element access
in mobile phones. We found that most APIs provide protection
against malicious usage but the level of protection varies widely.
Yet, with all APIs it is necessary that the underlying operating
system and the mobile phone hardware can be trusted. Based
on various existing exploits that circumvent such protection
mechanisms, we conclude that a secure element may not be
sufficiently protected on certain device platforms.

Further, we discovered two new attack scenarios applicable to
secure element-enabled mobile phones. The first attack scenario,
a denial-of-service attack, potentially allows to permanently
terminating the lifecycle of a secure element. Thus, it be-
comes impossible to manage (install, uninstall) applications
on the secure element. This scenario is possible on many
GlobalPlatform-compliant secure elements.

The second attack scenario, a relay attack, potentially allows
the remote usage of any secure element. By simply installing a
malicious application on the victim’s mobile phone, communi-
cation with the secure element can be relayed across a network

(e.g. the Internet) to a card emulator. This card emulator can
then be used in the same way as if the victim’s secure element
was integrated into it. Thus, it performs card emulation with the
remote secure element. Existing mobile phones with software
card emulation capabilities even provide an attacker with a
ready-made card emulator platform that cannot be distinguished
from legitimate secure element-enabled devices.

ACKNOWLEDGMENT

This work is part of the project “4EMOBILITY” within the
EU programme “Regionale Wettbewerbsfähigkeit OÖ 2007–
2013 (Regio 13)” funded by the European regional develop-
ment fund (ERDF) and the Province of Upper Austria (Land
Oberösterreich).

REFERENCES

[1] S. Clark, “RIM releases BlackBerry NFC APIs,” Near Field Commu-
nications World, May 2011. [Online]. Available: http://www.nfcworld.
com/2011/05/31/37778/rim-releases-blackberry-nfc-apis/

[2] Blackberry API 7.0.0: Package net.rim.device.api.io.nfc.emulation, RIM,
2011. [Online]. Available: http://www.blackberry.com/developers/docs/7.
0.0api/net/rim/device/api/io/nfc/emulation/package-summary.html

[3] H. McLean, “Nokia: No mobile wallet support in cur-
rent NFC phones,” Near Field Communications World, Jul.
2011. [Online]. Available: http://www.nfcworld.com/2011/07/21/38715/
nokia-no-mobile-wallet-support-in-current-nfc-phones/

[4] GlobalPlatform Card Specification, GlobalPlatform Spec., Version 2.2.1,
Jan. 2011.

[5] Nokia 6131 NFC SDK: User’s Guide, Forum Nokia, Version 1.1, Jul.
2007.

[6] Security and Trust Services API (SATSA), Java Community Process Spec.
JSR 177, Version 1.0.1, Aug. 2007.

[7] Contactless Communication API, Java Community Process Spec. JSR 257,
Version 1.1, Jun. 2009.

[8] Security Concept: Security considerations for the SmartCard API, SEEK
for Android, Jun. 2011. [Online]. Available: http://code.google.com/p/
seek-for-android/wiki/SecurityConcept

[9] W. Jeon, J. Kim, Y. Lee, and D. Won, “A Practical Analysis of Smartphone
Security,” in Human Interface and the Management of Information.
Interacting with Information, ser. Lecture Notes in Computer Science,
vol. 6771/2011. Springer Berlin Heidelberg, 2011, pp. 311–320.

[10] R. Verdult and F. Kooman, “Practical Attacks on NFC Enabled Cell
Phones,” in Proceedings of the Third International Workshop on Near
Field Communication (NFC 2011), Hagenberg, Austria, Feb. 2011, pp.
77–82.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
Escalation Attacks on Android,” in Information Security, ser. Lecture
Notes in Computer Science, vol. 6531/2011. Springer Berlin Heidelberg,
2011, pp. 346–360.

[12] S. Höbarth and R. Mayrhofer, “A framework for on-device privilege
escalation exploit execution on Android,” in Proceedings of IWSSI/SPMU,
Jun. 2011. [Online]. Available: http://www.medien.ifi.lmu.de/iwssi2011/

[13] A. Gostev, “Monthly Malware Statistics: August 2011,” Kaspersky Lab,
Sep. 2011. [Online]. Available: http://www.securelist.com/en/analysis/
204792190/Monthly Malware Statistics August 2011

[14] G. P. Hancke, “A Practical Relay Attack on ISO 14443 Proximity Cards,”
University of Cambridge, Computer Laboratory, Jan. 2005. [Online].
Available: http://www.rfidblog.org.uk/hancke-rfidrelay.pdf

[15] Z. Kfir and A. Wool, “Picking Virtual Pockets using Relay Attacks on
Contactless Smartcard,” in Proceedings of the First International Con-
ference on Security and Privacy for Emerging Areas in Communications
Networks (SECURECOMM’05), Sep. 2005, pp. 47–58.

[16] G. P. Hancke, K. E. Mayes, and K. Markantonakis, “Confidence in smart
token proximity: Relay attacks revisited,” Computers & Security, vol. 28,
no. 7, pp. 615–627, 2009.

2012 4th International Workshop on Near Field Communication

24 Downloaded from 
www.mroland.at




