
Requirements for an Open Ecosystem for Embedded
Tamper Resistant Hardware on Mobile Devices

Michael Hölzl
UAS Upper Austria,
Campus Hagenberg

Softwarepark 11
A-4232, Hagenberg

michael.hoelzl@usmile.at

René Mayrhofer
UAS Upper Austria,
Campus Hagenberg

Softwarepark 11
A-4232, Hagenberg

rene.mayrhofer@usmile.at

Michael Roland
UAS Upper Austria,
Campus Hagenberg

Softwarepark 11
A-4232, Hagenberg

michael.roland@usmile.at

ABSTRACT
Insufficient security and privacy on mobile devices have made
it difficult to utilize sensitive systems like mobile banking,
mobile credit cards, mobile ticketing or mobile passports.
Solving these challenges in security and privacy, could re-
sult in better mobility and a higher level of confidence for
the end-user services in such systems. Our approach for a
higher security and privacy level on mobile devices intro-
duces an open ecosystem for tamper resistant hardware. Big
advantages of these modules are the protection against unau-
thorized access and the on-device cryptographic operations
they can perform. In this paper, we analyse the requirements
and performance restrictions of these hardware modules and
present an interface concept for a tight integration of their
security features.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls,
Information flow controls.; H.5.m [Information Interfaces
and Presentation]: Miscellaneous.

Keywords
Tamper resistant hardware, trusted execution environment,
transparent secure channel, open ecosystem, secure element

1. INTRODUCTION
Although mobile operating systems have support for au-

thentication (PIN/pattern entry, face recognition, etc.) or
other security features (on-device encryption) major prob-
lems still exist: they are either too complicated (e.g. long,
complex password) or too easy to circumvent (e.g. 2D single
image face authentication). In the context of mobile devices
we have to be aware of special security threats. The portable
device might get stolen or lost which could give unauthorized
individuals the possibility to gain personal, business or other
privacy and security critical data. But the device does not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM 2013, Vienna, Austria
Copyright 2013 ACM 978-1-4503-2106-8/13/12 ...$15.00.

have to be stolen or lost to be risk of illegitimate usage. We
have to be aware that a flash memory can not be trusted.
Unauthorized access or data manipulation by third party
applications is a major security threat for security-critical sys-
tems [2]. Mobile platforms usually use sandboxing together
with permissions to prevent ”apps” from unauthorized ac-
cess to personal data or other application environments [10].
Users have to decide if they allow those permissions which is,
according to Miller [10], not a good choice. Other research
has also shown that sandboxing does not give sufficient secu-
rity against exploitable vulnerabilities [3, 5].

One attempt to overcome these issues is to use Embedded
Tamper Resistant Hardware (ETRH) to safely store and pro-
cess security-critical data and applications. In comparison to
current similar business solutions (e.g. ARM TrustZone), the
advantage of this attempt is the higher security level that
can be achieved by using a second processor. Examples for
such hardware are smartcards, secure elements and trusted
platform modules. They include a secure, tamper-resistant
key storage and an auxiliary processor for cryptographic
operations. A tight integration of those security methods on
mobile devices will allow security critical (e.g. banking, ticket-
ing) as well as non-security critical (e.g. gaming) applications
to make use of the ETRH features. We aim to achieve a level
of security which allows applications like mobile banking,
mobile payment and electronic passports to be executed in a
trusted environment based on these hardware modules.

In this demo we present our concept and prototype im-
plementation of an interface towards an open ecosystem for
Embedded Tamper Resistant Hardware on mobile devices. It
will give every application the possibility to securely install,
delete and manage own applets (small application) on the
ETRH and take advantage of its security features. We also
demonstrate example applications which make use of this
implemented interface to enhance the security and privacy
of the system. After all, we provide an Open Ecosystem for
every application running on the mobile device to make use
of all these features.

2. OPEN ECOSYSTEM FOR ETRH
In the past, many systems that base their security on tam-

per resistant hardware have been developed. Reference work
as in [7, 9] uses smartcards as the basis for an authentica-
tion system. The basic concept is to store master keys and
perform cryptographic operations in the tamper resistant
environment to achieve a higher security against attacks by
unauthorized individuals. Work of Urien and Kiennert [12]

MoMM2013 Papers Proceedings of MoMM2013

249

DOI 10.1145/2536853.2536947

Downloaded from
www.mroland.at

https://dx.doi.org/10.1145/2536853.2536947
https://www.mroland.at/

use secure elements (SE), an integrated circuit which comes
with NFC [8], for managing shared resources between mo-
bile phones, laptops or other mobile devices. They host
an OPENID service and therefore rely on the secure data
storage of this embedded hardware.

All of the related work in this field make use of the advan-
tages of an tamper resistant hardware in applications:

• Protection of stored data against unauthorized
access and tampering. A serial interface, which is
controlled by the operating system of the hardware, is
the only way to access this data [11].

• Cryptographic operations are performed directly
on the chip which makes it difficult for intruders
to acquire any information. Of course, there have
been multiple side-channel attacks on tamper resistant
devices like power-analysis [6], differential fault-analysis
[1] or others. However, a well designed system might
detect data penetration and, therefore, delete all data
before they can be read.

Our goal is to give applications like those listed above
an open ecosystem to make use of all the advantages of
an ETRH on mobile devices. Third-party as well as pre-
installed applications with different security requirements
should get the possibility to easily access multiple variants
of tamper resistant hardware on mobile devices. Such an
ecosystem should give applications the possibility to install,
delete and manage own applets (small applications) on the
ETRH. However, the user and applications running on the
device should not notice any performance constraints and be
concerned with limited resources on the hardware (memory,
processing speed). The open ecosystem also has to take care
that the communication can not be interfered with and that
applets can not be accessed by unauthorized individuals.

To conclude, in our terms an open ecosystem for ETRH on
mobile devices has to fulfil following tasks and requirements:

1. Install, delete and manage own applets on a tamper re-
sistant hardware. These tasks are currently performed
by a closed ecosystem with one secure channel to a
server back-end.

2. Make security features, like managing passwords and
performing cryptographic operations on the ETRH
available to all mobile device applications.

3. Communication should only be possible with own ap-
plets and no details about other applets should be
accessible.

4. Information about an existing secure channel should not
compromise other applet-to-application communication.
In the current standard the communication only uses
one secure channel to the secure element which would
possibly compromise communication if multiple entities
have access.

5. Authenticity of the used interface, used hardware, run-
ning applets as well as applications using their own
applets must be ensured.

6. Transparency in memory and performance. Although,
the embedded hardware does have very limited re-
sources, the application and user should not be con-
cerned about this limitation.

Middleware

Application Layer

Hardware
Layer

Secure Application Framework

Mobile Phone

Applet
Manager

UICC
SE

Embedded
SE

SD Card
SE

Performance
Manager

Ticketing
Application

Banking
Application

NFC Card
Emulation

Third-Party
Application

Environment

Performance
Tester

Extended
Open Mobile API

Secure
Element

Emulation

Figure 1: Architecture of the open ecosystem in a mobile
phone environment.

3. CONCEPT AND PROTOTYPE
In a first step of getting towards such an open ecosystem we

started with the design of an interface that allows installing,
deleting and accessing applets inside a ETRH. This interface
incorporates the first two requirements from section 2. The
other requirements for an open ecosystem will be a matter
of future work. Especially, the changes that are required
to current organizational work flows are not considered in
our architecture (e.g. changes required in connection to the
trusted service managers (TSMs)). In this conceptual design
and prototype implementation we focus only on the mobile
phone as an example of a mobile device and we implement
our prototypes for the Android operating system.

Figure 1 depicts the architecture of our mobile device
ecosystem consisting of the four layers: applications, secure
application framework, a middleware and the hardware itself.
As one possible type of an ETRH we used secure elements in
different variants on the mobile phone. The SE is currently
available as a microSD, a UICC card or as an embedded
chip in the mobile device. Our prototype implementation
can communicate with all these variants and additionally
comes with its own on-device emulator for easy debugging
of applets.

3.1 Secure Element Middleware
Access to the hardware on mobile devices in our architec-

ture is based on the Open Mobile API, a specification for an
API to access secure elements.

With the middleware we also add support for secure ele-
ment emulation. With this additional interface in the Open
Mobile API it is possible to emulate an applet within the run-
ning system. The source code is installed together with the
application source and runs on the application processor (in

Proceedings of MoMM2013 MoMM2013 Papers

250

DOI 10.1145/2536853.2536947

Downloaded from
www.mroland.at

Figure 2: Account manager which stores passwords for mul-
tiple accounts on the secure element. Authentication to the
applet is done by entering the master password.

Android it runs in the Dalvik VM). This makes prototyping
without an actual SE very easy.

3.2 Secure Application Framework
This application framework layer represents the entry-point

for the environment as well as for phone applications. It
currently consists of three components: an Applet Manager,
Performance Manager and an NFC Card Emulation module
for communication with external readers and phones.

The main tasks of this framework are to manage the com-
munication between applications and secure elements. It
is responsible for setting up a secure channel and offer ap-
plications an API to install, delete and manage their own
applets. The Applet Manager component is responsible for
this management and also has to take care, together with
the Performance Manager, that the limitations of memory
and processor of the SEs are not exceeded. In the current
prototype this is done by a static limit of installed applets.
However, to fulfil the open ecosystem requirement of trans-
parency in memory and performance we will conduct future
research in that matter. One possible approach would be a
swap-in and out procedure similar to memory management
on other operating systems.

3.3 Application Layer
The components of the application layer depicted in figure

1 are only examples for the variety of use-cases we consider
with our open ecosystem. Security-critical applications like
mobile banking, ticketing or access control systems as well as
any other third-party implementations on the marketplace
should be able to use a tamper resistant hardware as basis
for the security and privacy of their systems.

One application that makes use of the framework is il-
lustrated in figure 2. The account manager stores personal
passwords of web services or any other system on a specified
SE. To access these accounts and passwords the user only
has to remember the master key. Besides this application
we implemented further prototypes which make use of the
interface to access the SEs: Applet manager, cryptography
tester and performance tester.

Table 1: Average round trip time between SD/UICC secure
elements and application for different APDU cases.

Data

bytes
Case-1 Case-2 Case-3 Case-4

SD

1 19 ms 18 ms 19 ms 41 ms

64 19 ms 109 ms 108 ms 214 ms

128 20 ms 206 ms 200 ms 393 ms

255 23 ms 379 ms 386 ms 776 ms

UICC

1 10 ms 10 ms 10 ms 13 ms

64 10 ms 19 ms 18 ms 28 ms

128 10 ms 28 ms 26 ms 41 ms

255 10 ms 45 ms 41 ms 77 ms

4. PERFORMANCE ANALYSIS OF
DIFFERENT HARDWARE VARIANTS

Opening the tamper resistant hardware platform for all
applications running on the main processor raises security as
well as performance concerns. Typically, this hardware comes
with very limited memory and processing power. Current
storage sizes of SEs vary from 10 kB to 200 kB which also
restricts the amount of possibly installed applets.

To find out if the processing powers are sufficient for an
open ecosystem, we performed measurements of transfer
speed and cryptographic performance with SEs on mobile
phones.

4.1 Transfer Speed of Hardware Variants
Communication between the framework and the SE is

done with so called Application Protocol Data Units (APDU).
The smart card specification ISO/IEC 2816-4 [4] declares 4
different types of APDU commands:

• Case-1: Command header

• Case-2: Command header+Response data

• Case-3: Command header+Command data

• Case-4: Command header+Command data+Response
data

Table 1 lists the average time of 60 round trip tests between
an application and the SD/UICC card with all 4 command
types. For the tests we used a DeviceFidelity CredenSE 2.8J
with a NXP J3A080 chip and a Gemalto UICC, both with
Java Card 2.2. The APDU exchange to the UICC is done
over the Android telephony framework and the baseband.
For the communication with the secure element on the SD,
we have to use the standard microSD file system and write
commands and responses in a temporary file on the card.
The results show that the communication over the microSD
file system is much slower than over the baseband channel.
With a round trip time of 776 milliseconds for 256 data
bytes, we would only have a data rate of 329 B/s. The UICC
reaches a data rate of 3,31 kB/s for case-4 commands. For
case-2 and case-3 commands (only sending or receiving data)
the transfer time is nearly half the number. Due to the lack
of access to the embedded SE, we were not able to perform
measurements on the third possible variant.

MoMM2013 Papers Proceedings of MoMM2013

251

DOI 10.1145/2536853.2536947

Downloaded from
www.mroland.at

Table 2: Average computation times of cryptographic opera-
tions on secure element

Key length Data Encr. Decr.

AES
128 bits 128 B 51 ms 54 ms

256 bits 128 B 59 ms 62 ms

RSA 1024 117 B 53 ms 117 ms

3-DES 192 128 B 56 ms 54 ms

Operation Time

SHA-256 Hash of 128 bytes 78 ms

ECDH-192

Key-pair generation 76 ms

Generate SS 103 ms

Total 196 ms

RSA-1024 Key-pair generation 1,957 ms

4.2 Cryptographic Operations
The secure element comes with a co-processor that can

perform multiple cryptographic operations in hardware. One
of the major goal of the open ecosystem is to use this feature
to establish a secure channel between the application and
the applet. To make a feasible statement on the maximum
transfer rate in such a secure channel, we measured not only
the transfer speed but also the performance limitations of
those cryptographic operations on the actual hardware.

Table 2 lists the result of the computation measurements
for AES, RSA, 3-DES, SHA-256 and ECDH on the chip.
The fastest algorithm for encryption and decryption of 128
bytes of data is AES-128. However, the other two operations
gave similar encryption time for the selected key lengths.
From the results we can also see that RSA key generation is
significantly slower and ECDH is therefore the better choice
for asymmetric cryptography. In terms of speed we can state
that the secure element is able to encrypt at around 2.51
kB/s with AES-128 and at around 2.169 kB/s with AES-256
and decrypt at 2.37 kB/s and 2.06 kB/s respectively.

5. DISCUSSION
The performed measurements show that there is a signifi-

cant difference in the transfer speed of the hardware variants.
Standard cryptographic operations on the SE are, however,
very fast due to the hardware implementation. If we combine
the values, we can make a statement on the limitations of an
open ecosystem when it comes to user interactions: Assum-
ing for the secure channel between application and applet we
use AES-128 to ensure the privacy of the communication. In
a use-case where the user wants to encrypt or decrypt data
on the SE, we would need a total time of 878 ms (SD) or 179
ms (UICC) for 255 bytes of data (transfer speed + 2 ∗ 128
bytes AES encryption). We also assume the user is willing
to wait a maximum time of one second for the execution of
an operation. The maximum data that could be used for
such an open ecosystem without annoying the user is around
290 bytes for SD and 1,424 bytes UICC.

While this data rate might be a limitation for applications
with high speed requirements, we can assume that the per-
formance would be sufficient for applications like an account
manager, a password storage or an access control system.

6. CONCLUSION
In this paper and in our demonstration we present a con-

cept and prototype implementation of our open ecosystem
with multiple example applications like a password manager,
applet manager, cryptography tester and a performance
tester. We will also demonstrate our prototype of a secure
element emulator and the transparent access to all possible
SE variants on an Android phone.

Future work will consist of further investigation on require-
ments for an open ecosystem of embedded tamper resistant
hardware. We will especially focus on finding solutions to all
tasks listed in section 2 to achieve our main goal of setting
up a trusted environment for security-critical as well as other
applications on mobile devices.

7. ACKNOWLEDGMENTS
This work has been carried out within the scope of u’smile,

the Josef Ressel Center for User-Friendly Secure Mobile En-
vironments. We gratefully acknowledge funding and support
by the Christian Doppler Gesellschaft, A1 Telekom Austria
AG, Drei-Banken-EDV GmbH, LG Nexera Business Solu-
tions AG, and NXP Semiconductors Austria GmbH. The
authors would also like to thank Endalkachew Asnake for
the implementation of the transfer and cryptography tester.

8. REFERENCES
[1] R. Anderson and M. Kuhn. Low cost attacks on tamper

resistant devices, pages 125–136. 1998.

[2] N. Ben-Asher, N. Kirschnick, H. Sieger, J. Meyer,
A. Ben-Oved, and S. Möller. On the need for different
security methods on mobile phones, pages 465–473.
MobileHCI ’11. ACM, 2011.

[3] S. Höbarth and R. Mayrhofer. A framework for
on-device privilege escalation exploit execution on
android. Proceedings of IWSSI/SPMU, 2011.

[4] ISO. ISO/IEC-7816: Part 4: Interindustry commands
for interchange. International Organisation for
Standardisation, Geneva, Switzerland, 2005.

[5] S. Khan, M. Nauman, A. Othman, and S. Musa. How
secure is your smartphone: An analysis of smartphone
security mechanisms, pages 76–81. 2012.

[6] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis, pages 388–397. 1999.

[7] C.-T. Li and M.-S. Hwang. An efficient
biometrics-based remote user authentication scheme
using smart cards. Journal of Network and Computer
Applications, 33(1):1–5, Jan 2010.

[8] G. Madlmayr, J. Langer, C. Kantner, and J. Scharinger.
NFC Devices: Security and Privacy, pages 642–647.
2008.

[9] T. Mantoro and A. Milisic. Smart card authentication
for Internet applications using NFC enabled phone,
pages D13–D18. 2010.

[10] C. Miller. Mobile attacks and defense. IEEE Security &
Privacy, 9(4):68–70, 2011.

[11] W. Rankl and W. Effing. Smart Card Handbook. Jun
2010.

[12] P. Urien and C. Kiennert. A new cooperative
architecture for sharing services managed by secure
elements controlled by android phones with IP objects,
pages 404–409. 2012.

Proceedings of MoMM2013 MoMM2013 Papers

252

DOI 10.1145/2536853.2536947

Downloaded from
www.mroland.at

