
(Ab)using foreign VMs: Running Java Card Applets in
non-Java Card Virtual Machines

Michael Roland
NFC Research Lab Hagenberg

University of Applied Sciences Upper Austria
Softwarepark 11, 4232 Hagenberg, Austria

michael.roland@fh-hagenberg.at

Josef Langer
NFC Research Lab Hagenberg

University of Applied Sciences Upper Austria
Softwarepark 11, 4232 Hagenberg, Austria

josef.langer@fh-hagenberg.at

René Mayrhofer
Josef Ressel Center u’smile

University of Applied Sciences Upper Austria
Softwarepark 11, 4232 Hagenberg, Austria
rene.mayrhofer@fh-hagenberg.at

ABSTRACT
Creating Java Card applications for Near Field Communi-
cation’s card emulation mode requires access to a secure
smartcard chip (the secure element). Today, even for devel-
opment purposes, it is difficult to get access to the secure
element in most current smart phones. Therefore, it would
be useful to have an environment that emulates a secure el-
ement for rapid prototyping and debugging. Our approach
to such an environment is emulation of Java Card applets
on top of non-Java Card virtual machines (e.g. Android’s
Dalvik VM). However, providing a Java Card run-time envi-
ronment on top of another Java virtual machine faces one big
problem: The Java Card virtual machine’s operation prin-
ciple is based on persistent memory technology. As a result,
the VM and the applications that run on top of it have a sig-
nificantly different life-cycle compared to other Java VMs.
Based on specific scenarios for secure element emulators for
the Android platform, we evaluate these differences and their
impact on Java VM-based Java Card emulation. Further, we
propose possible solutions to the problems that arise from
these differences in the life-cycles.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.11 [Software Engineering]: Software Architectures;
D.2.m [Software Engineering]: Miscellaneous

General Terms
Algorithms, Experimentation, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2013, 2-4 December, 2013, Vienna, Austria
Copyright 2013 ACM 978-1-4503-2106-8/13/12 ...$15.00.

Keywords
Java Card, Emulator, Secure Element, Near Field Commu-
nication, Card emulation, Android

1. INTRODUCTION
Smartcards are pervasive in our every-day lives. We use

them as keys to buildings, as bank and credit cards, as bus
tickets, as SIM cards in our mobile devices or to descramble
pay-TV. Also many of our identity documents (e.g. pass-
ports) contain smartcard microchips.

While some of these smartcards contain only memory that
can be read and written using a smartcard reader, many
smartcards contain a processor that executes complex soft-
ware programs, thus the word “smart”. In the past, smart-
cards typically contained application-specific software sys-
tems. Today, however, many smartcards follow an open ap-
proach: The smartcard’s operating system provides a stan-
dardized run-time environment consisting of a standardized
programming interface and a standardized instruction-set.
Thus, it becomes possible to develop and run applications
independent of the actual hardware and operating system
implementations.

The most widespread platform for open and interopera-
ble smartcard applications is Java Card. The Java Card
platform uses a subset of the Java language and has been
optimized for execution on smartcards. While the Java
Card platform itself is open, smartcards are tightly con-
trolled environments. Deployment of software onto smart-
cards requires credentials that are typically only known to
the card issuer or a trusted third party. This closed na-
ture of smartcard microchips is particularly an issue with
Near Field Communication (NFC) in mobile devices (typi-
cally smartphones). NFC’s card emulation mode, where a
mobile device acts as a contactless smartcard, relies on a
smartcard chip, the secure element, to perform the actual
card emulation. The secure element typically belongs to the
manufacturer of the mobile device or to the mobile network
operator. Management of the secure element is often dele-
gated to a trusted service manager (TSM). This closed and
complicated environment usually makes it impossible for the

Proceedings of MoMM2013 MoMM2013 Papers

286

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

https://dx.doi.org/10.1145/2536853.2536870
https://www.mroland.at/

average developer to deploy (even for prototyping and test-
ing) applications to a secure element (cf. [4]).

Besides the issue of deploying application prototypes, an-
other issuer is in-place source-level debugging. In the con-
text of the secure element in an NFC-enabled smartphone,
in-place debugging would mean that the Java Card appli-
cations running on the secure element would be debuggable
while they are accessed by apps through regular secure ele-
ment APIs, as well as by external smartcard readers through
the contactless NFC interface. Thus, a developer could step
through the executed code while the Java Card application
interacts with external application components. However,
due to their high security requirements, current secure ele-
ment microchips cannot be attached to a debugger for in-
circuit emulation. As a result, developers seek an alternative
to the secure element which provides an open environment
for debugging and rapid prototyping of Java Card applica-
tions that could later be deployed to actual secure elements.

In the context of Android-based mobile devices, a Java
Card emulator could be built on top of the system’s native
Dalvik Java virtual machine (cf. [5]). As the Java Card lan-
guage is a subset of the Java language, it is possible to com-
pile Java Card applications for other Java virtual machines.
Only the Java Card specific APIs would need to be added
to the Java run-time environment. The in-place debugging
and rapid prototyping capabilities could be provided by in-
terfacing the Java Card emulator to existing secure element
APIs (e.g. the Open Mobile API) and to the software card
emulation mode which is available on some Android-based
devices (cf. [4, 5]).

The main benefit of using a standard Java virtual ma-
chine for emulation is the seamless integration with existing
debuggers. For instance, the Dalvik Java virtual machine
already provides source-level debugging using the Android
debugger. Similarly, a Java SE virtual machine also comes
with ready-made debugger integration. When creating a
Java Card emulator with a custom Java Card virtual ma-
chine, however, these capabilities would also have to be man-
ually implemented.

Nevertheless, there is one big issue when running Java
Card applications in non-Java Card virtual machines: A
Java Card virtual machine has a significantly different life-
cycle compared to other VMs. While a standard Java VM
typically starts when the Java application starts and termi-
nates when the Java application terminates its execution,
the Java Card VM starts when the smartcard is manu-
factured and terminates when the smartcard is destroyed.
Thus, the state of the Java Card VM and the applications
that run on top of it is persistent across the whole life-time
of the card regardless of power cycles, etc. Besides the differ-
ences in the life-cycle, the Java Card run-time environment
has a transaction mechanism that assures atomic modifica-
tion of application data and rollback in case of torn trans-
actions.

In this paper, we evaluate these differences in virtual ma-
chine and application life-cycles and their impact on Java
VM-based Java Card emulation. We base these evalua-
tions on specific scenarios for secure element emulators for
the Android platform. We discuss possible solutions to the
problems that arise from these differences in the life-cycles.
Finally, we propose an implementation for persisting Java
Card application state in non-Java Card virtual machines.
Our solution uses Java’s reflection API to collect information

about classes and objects, and to store and later reconstruct
the persistent objects of a Java Card application. We imple-
mented a working prototype for Java SE and Android that
fulfills all qualities that we need for persisting Java Card
applications. The prototype uses a simple XML file as its
database for storing object state.

2. JAVA CARD
Java Card technology is a subset of the Java program-

ming language combined with a run-time environment that
is optimized for tiny embedded devices like smartcards [7].
The run-time environment consists of a Java Card virtual
machine (as defined in [8]), a Java Card specific API and
Java Card specific security features.

To assure that Java Card applications have a small foot-
print that matches the constrained resources of a smartcard,
many features of the Java language are unavailable in the
Java Card language. For instance, Java Card only supports
the primitive data types boolean, byte, short and optionally
int. Furthermore, most of the core API classes of the Java
language are unsupported. Nevertheless, the Java Card lan-
guage is a true subset of the Java language. Thus, all Java
Card language constructs also exist in the Java language.
However, the Java Card API provides several classes with
smartcard specific functionality like communication using
smartcard commands, management of PIN codes and cryp-
tographic keys, and execution of cryptographic operations
that do not exist in the Java API.

The Java Card virtual machine is the abstraction layer
between Java Card applications and different device plat-
forms. Interoperability across different hardware platforms
is provided through a common instruction set and a common
application binary format. The Java Card VM’s lifetime is
equivalent to the lifetime of the smartcard microchip [8]:
The VM is installed and started during the manufacturing
process and terminates when the chip is destroyed. In be-
tween, the VM’s lifetime spans even across any power cycles
(though the VM appears to be inactive while power is re-
moved). This means that Java Card applications that run
inside the VM also run across power cycles. Applications,
their data and their state are preserved through storage in
persistent memory (e.g. EEPROM).

An applet instance is the main entry point of a Java Card
application. An applet provides several public methods for
interaction with the Java Card run-time environment. The
applet’s install method is invoked to create and initialize
an applet instance. After installation, applet instances re-
main in a suspended state until they are explicitly selected
through a smartcard command. During selection, the ap-
plet instance’s select method is invoked to prepare the ap-
plet for further processing. Once an applet is selected, all
further smartcard commands are forwarded to that applet
instance by triggering its process method. Upon selection of
another applet instance, the current applet instance’s dese-
lect method is invoked and the applet instance returns into
suspended state. Similar to the Java Card VM, Java Card
applets execute forever (or until they are explicitly unin-
stalled). However, applet instances return to the suspended
state upon power loss.

In addition to storing application data associated with ap-
plet objects in persistent memory by default, the Java Card
platform provides atomic transactions on this data. That
is, certain modifications to persistent data can be guaran-

MoMM2013 Papers Proceedings of MoMM2013

287

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

teed to be either performed completely or not to happen
at all. Through that transaction mechanism, an applet can
assure that data that belongs to one transaction is consis-
tently stored to persistent memory. Thus, when a transac-
tion is aborted (either explicitly or though power loss), any
changes to persistent data are rolled back to the state before
the transaction started. Only when a transaction completes
successfully, changes to persistent data are committed to
persistent memory.

3. SECURE ELEMENT EMULATORS
Several Java Card simulators exist which allow simula-

tion and testing of Java Card applets without real smartcard
hardware. The Java Card reference implementation, for in-
stance, integrates with the Java ME secure element API.
However, it can only process compiled Java Card applica-
tions and does not permit source-level debugging. Several
smartcard manufacturers provide their custom Java Card
simulation environments that simulate their specific smart-
card architectures (e.g. G&D’s Java Card Simulation Suite
and Gemalto’s Simulation Suite). Moreover, there exist Java
Card simulators that run on top of standard Java virtual ma-
chines (e.g. Java Card Workstation Development Environ-
ment and jCardSim). Unfortunately, non of these simulators
are known to integrate with current smartphone operating
systems (specifically with the Android platform). Also, non
of these simulators can be used for true prototyping of secure
element applications.

As a consequence, we developed scenarios for integrating
an open environment for debugging and rapid prototyping
of secure element applications on Android devices and on
the Android platform emulator (cf. [5]). The resulting Java
Card emulator can be used as a drop-in replacement for a
secure element on the Android platform and provides com-
parable functionality to a regular secure element. While the
emulator operates at a much lower security level, it is an
open platform that is available to all developers and that
does not require the complicated and closed ecosystem of a
regular secure element chip.

3.1 JC Emulator for the Android Emulator
The idea behind this concept is to use the existing open-

source Java Card run-time environment simulator imple-
mentation jCardSim1 and to integrate it with the Android
emulator as well as to interface it with card emulation hard-
ware. The simulator runs on top of the Java SE virtual ma-
chine. Thus, it already runs in an environment that supports
source-level debugging. jCardSim currently supports only
two ways of interacting with the simulated applets: scripts
that consist of smartcard commands and access through the
Java Smart Card IO API.

Fig. 1 shows our scenario for integrating the Java Card
emulator with the Android emulator. Android’s Open Mo-
bile API-based secure element API (cf. [6]) is extended with
a terminal interface that connects to jCardSim. Moreover,
the card emulator hardware (e.g. an NFC reader in soft-
ware card emulation mode) is attached to jCardSim so that
smartcard commands can be passed between the card emu-
lator hardware and the simulator.

1http://jcardsim.org/

Figure 1: A Java Card emulator attached to the
Android platform emulator [5].

3.2 JC Emulator for Android Devices
In the second scenario (see Fig. 2), the Java Card emulator

is embedded into the mobile phone system as a middleware.
Thus, in this scenario, jCardSim is ported to Android and
runs on top of the Dalvik Java virtual machine. Again, an
interface to access the emulator is added as a terminal in-
terface to Android’s Open Mobile API-based secure element
API implementation. Moreover, the emulator is connected
to the software card emulation API (sometimes also called
“soft-SE”or“host card emulation”) that is available for some
Android devices (cf. [4, 10]).

3.3 Deficiencies of these Scenarios
The main problem with these scenarios is the persistent

nature of the Java Card VM. While the Java Card virtual
machine and the objects it uses to represent applications
and their data can persist throughout the whole lifetime of
a smartcard, the Java VM and the Dalvik VM are both pro-
cesses of the underlying operating system and only run while
an application process is executing. Thus, the lifetime of the
latter two VMs is bound to the lifetime of the Java applica-
tions that run on top of them. Both, the Java VM and the
Dalvik VM, terminate when the Java application’s last ex-
ecution path terminates, when the VM process is forced to
terminate by the operating system or when the host system
resets.

As a consequence, simply porting the Java Card API to
the Java VM or the Dalvik VM does not provide the same
level of capabilities as the Java Card run-time environment.
Specifically, persistence of objects is not available by default.
This means, however, Java Card applets (as well as their
data and their state) are lost when the virtual machine that
runs the emulator terminates. This is usually not a problem
for short term simulation and debugging sessions where the
Java Card emulator is actively used. However, when emu-
lating a secure element in a mobile device, we also want to
perform long-term tests and prototyping. In these scenar-
ios, an ideal secure element emulator would even persist any
application state across power-cycles of the mobile device.

Proceedings of MoMM2013 MoMM2013 Papers

288

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

Figure 2: A Java Card emulator integrated into an
Android device [5].

4. APPLICATION AND VM LIFE-CYCLES
Applications running on top of non-Java Card VMs have

fundamentally different life-cycles as compared to Java Card
applets on the Java Card VM. The Java Card VM’s life-
time spans across the whole smartcard lifetime. Due to use
of persistent memory technologies for application and data
memory, applications and their state persist from installa-
tion until uninstallation. Thus, an application appears to
continue to run across power and reset cycles. Moreover,
the Java Card run-time environment provides a transaction
mechanism that guarantees certain operations to be atomic.

4.1 Java SE Virtual Machine
In the scenario of a Java Card emulator attached to the

Android emulator, the Java Card emulator environment runs
on top of the Java SE virtual machine on a PC system. The
Java Card emulator is completely detached from the An-
droid system and the Android emulator instance. As a con-
sequence, power-cycles and reconfiguration of the Android
system do not interfere with the life-cycle of the Java Card
emulator. This makes it possible to persist the state of Java
Card applications even across multiple boot-ups of the An-
droid system inside the Android emulator. Only restarts of
the host operating system or the Java Card emulator’s Java
VM would result into loss of Java Card applets’ application
state.

Nevertheless, for prototyping and long-term tests (partic-
ularly in combination with an external card emulation de-
vice), it would be interesting to preserve the Java Card ap-
plications’ state across multiple executions of the Java Card
emulator. A facility built into Java SE that could potentially
help with persisting object state across Java VM life-cycles is
serialization. However, Java’s serialization mechanism typ-
ically requires modifications to the Java Card application’s
source code.

A significant difference between Java SE and Java Card is
the transaction mechanism. Java SE does not support trans-
action atomicity. This may not be an issue for the Java
Card emulator in many situations as the emulator would
continue to run even if the connection between the emula-
tor and the secure element API or the connection between
the card emulation device and an external reader is torn.
Thus, any remaining code would be executed because there
is no power-loss upon disconnecting the emulator. How-
ever, a Java Card application could also intentionally abort
a transaction. In that case, the emulator would need to roll-
back the application state to the state before the transaction
started.

jCardSim, the open-source implementation that we used
as the basis for our emulator scenarios, has been designed
to run on top of a Java SE virtual machine. Consequently,
it suffers from the above problems. In its current version
it is neither capable of persisting state across simulation
sessions nor of simulating Java Card’s atomic transaction
mechanism.

4.2 Android Dalvik Virtual Machine
Java applications on Android consist of windows (so-called

activities), background services, broadcast message receivers
and databases (so-called content providers). All components
of one application typically share one Dalvik virtual machine
that runs as an operating system process.

Activities are only active while they are visible and in the
foreground. Broadcast receivers are only active while they
process a received message. Therefore, the secure element
emulator would typically run as a service in the background.
As Android is designed for resource-constrained mobile de-
vices, application components (like activities and services)
and their containing virtual machine processes may be shut
down at any time in order to free resources. While a process
with a foreground activity is unlikely to be terminated due
to resource shortage, background services are significantly
more likely subject to resource-reuse.

In order to recover from situations where an Android ap-
plication was terminated by the system, the Android plat-
form already contains a mechanism for storing and recov-
ering application state. However, Java objects representing
application state and data are not persisted automatically.
Instead, it is up to each application to manually store and
recover data that is relevant to current application state.
Therefore, Android’s state recovery is not comparable to
the Java Card VM’s persistent memory.

As a result, the situation for Java Card emulation inside
the Dalvik VM is even worse than with the Java VM. The
Dalvik VM and, consequently, the state of all Java Card ap-
plications running inside the emulator may be lost as a result
of device reboots or as a result of the system automatically
terminating idle or potentially unused processes. This would
be an issue for long-term tests and for prototyping of Java
Card applications.

For the transaction mechanism, the same limitations as
with the Java VM apply. Thus, the Dalvik VM and the An-
droid platform do not support rollback of application state
to a defined boundary.

4.3 Resulting Problem
According to the specification of the Java Card run-time

environment [7], applet instances (i.e. objects instantiated

MoMM2013 Papers Proceedings of MoMM2013

289

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

from an applet class) and objects referenced from a persis-
tent object’s field or from a class’s static field are persistent.

However, preserving application state in non-Java Card
virtual machines requires manual implementation. Typi-
cally, this would mean modifications to the Java classes of
the Java Card applications would become necessary (e.g.
to extract and implant the state of private member fields).
However, simulation and debugging should be performed
with the original applet source code in order keep source
code interoperable between the emulator and a real smart-
card. Moreover, modifications could potentially cause mis-
matches to the execution on real smartcard hardware. There-
fore, the emulator should be capable of extracting and im-
planting the state of the emulated Java Card applications
without requiring modifications to their source code.

5. RELATED WORK AND APPROACHES
A facility for persisting state in Java is serialization. Se-

rialization permits a graph of connected objects to be con-
verted into and restored from a byte stream [1]. Serializa-
tion, however, has several disadvantages: Serialization works
only for one complete directed graph of connected objects
that is generated by starting at one root node and iterating
through all objects reachable from that node. Serializing and
deserializing from multiple root nodes would result into com-
pletely separated object graphs after deserialization. Thus,
even if two graphs referenced the same object before seri-
alization, they would reference two separate instances after
deserialization. Also, it is not possible to automatically seri-
alize or deserialize all static members of a class. It is also im-
possible to only include specific parts of an object graph into
serialization. Moreover, Java requires serializable classes to
be tagged as serializable. Thus, modifications to the classes’
source code are necessary.

Another technique that could potentially be used to in-
troduce persistence to Java objects without modifying the
actual classes is aspect-oriented programming (AOP). AOP
is used to add functionality to a program on a level that is
independent of a program’s abstraction layers and modular-
ization. Rashid and Chitchyan [3] describe how aspects can
be used to add persistence to existing classes. However, their
implementation requires these classes to fulfill certain qual-
ities. For instance, getter and setter methods are expected
in order to retrieve and modify an object’s fields. Moreover,
AOP frameworks for Java usually need pre-processing of the
application source code or post-processing of byte code in
order to map the aspect-oriented Java code into code that
runs on a regular Java VM. This is, for instance, the case
with AspectJ for Java SE and Android. As a result, source-
level debugging of Java Card applications would be severely
hindered.

A programming technique that comes close to what we
would like to achieve is object-relational mapping (ORM).
There exist many ORM frameworks for Java (e.g. ActiveOb-
jects2, Apache Cayenne3, Hibernate4 and ORMLite5). With
ORM, the objects of an application are mapped into a rela-
tional database. Thus, it becomes possible to store objects
to and retrieve objects from a relational database. Never-

2https://java.net/projects/activeobjects/
3http://cayenne.apache.org/
4http://www.hibernate.org/
5http://ormlite.com/

theless, typical ORM frameworks need modifications of the
application source code (e.g. adding annotations, adding no-
argument constructors or even adding getter/setter methods
in order to access certain fields; cf. [9]). Overall, ORM seems
to require detailed knowledge of an application’s data struc-
tures in order to implement the database mapping. How-
ever, this is not the case as we want our solution to be ca-
pable of handling arbitrary Java Card applications.

A technique comparable to ORM is object data manage-
ment group (ODMG) binding. This technique maps Java
objects to an object-oriented database. Therefore, the schema
of the database that contains the persistent Java objects
matches the Java classes [1]. While ODMG bindings do not
require modifications to the persistent classes’ source code,
these bindings require either a pre-processor to add the bind-
ings to the Java source code or a post-processor to add the
bindings to the Java byte code [2]. Thus, they would have
a significant impact on source-level debug-ability.

6. PROPOSED SOLUTION
While existing techniques already provide means to persist

Java objects, our ideal solution should fulfill the following
qualities:

• Networks of objects starting from one or more root
nodes should be storable to and recoverable from per-
sistent memory maintaining all references.

• Static fields of classes should be persistable by speci-
fying a list of classes.

• No modifications to the source code of the Java Card
classes should be required.

• No pre- or post-processing should be required in or-
der to maintain source-level debug-ability with exist-
ing tools.

• The solution should work for both, Java SE and An-
droid.

We, therefore, decided to create our own prototypical imple-
mentation of a persistence mechanism for Java. Our solution
makes use of the Java reflection API which is available for
Java SE as well as for Android. Reflection has the advantage
that no knowledge of the classes and their fields is required
at compile-time. Moreover, we use the Objenesis6 library
which permits instantiation of Java objects without calling
a class’s constructor.

Our implementation collects object state by starting at
defined root nodes (the Java Card applet instances that are
known to the Java Card run-time environment) and by iter-
ating through every non-static field declared in the objects’
classes and super-classes:

Class objectClass = object.getClass();

while (objectClass != null) {

for (Field field

: objectClass.getDeclaredFields()) {

field.setAccessible(true);

if (!Modifier.isStatic(field.getModifiers())) {

Object fieldValue = field.get(object);

Class fieldType = field.getType();

6http://objenesis.org/

Proceedings of MoMM2013 MoMM2013 Papers

290

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

String fieldName = objectClass.getName() +

"#" + field.getName();

ObjectState fieldState =

process(fieldValue, fieldType);

objectState.addField(fieldName, fieldState);

}

objectClass = objectClass.getSuperclass();

}

}

For each discovered object, an object state representation is
created. The object state representation indicates whether
the field is a primitive value or a reference to an object or to
an array. The state representation of an object maps each
field’s name to the object state representation of the field’s
value or referenced object. The state representation of an
array maps each array entry to its object state representa-
tion. The state representation of a primitive value contains
the primitive value.

In order to prevent duplication or duplicate processing of
referenced objects, a map is created that contains a unique
identifier for each reference as a key and the associated ob-
ject state representation as its values. References that were
previously found while iterating through the object graph
are skipped from further processing. For each newly discov-
ered object, an entry is added to that map. Consequently,
the object graph is reconstructed as a graph of object state
representations.

In order to get a list of all classes of the Java Card appli-
cations that could potentially contain static fields with data
that needs to be persistent, a list of relevant classes has to
be manually created. Based on that list, our implementa-
tion iterates through each declared static field and collects
the associated object state representation:

for (Field field : clazz.getDeclaredFields()) {

field.setAccessible(true);

if (Modifier.isStatic(field.getModifiers())) {

Class fieldType = field.getType();

if (!(Modifier.isFinal(field.getModifiers()) &&

fieldType.isPrimitive())) {

Object fieldValue = field.get(object);

String fieldName = objectClass.getName() +

"#" + field.getName();

ObjectState fieldState =

process(fieldValue, fieldType);

classState.addField(fieldName, fieldState);

}

}

}

The classes used for state representation of objects and classes’
static fields were designed so that they can easily be serial-
ized to and deserialized from XML. The resulting XML file
is used a the back-end database for persisting object state:

<References>

<ObjectState hashCode="1106723384"

fieldType="test.Car">

<Fields>

<Field name="test.Car#wheels"

hashCode="1106727376" />

(...)

</Fields>

</ObjectState>

<ArrayState hashCode="1106727376"

fieldType="[Ltest.Wheel;">

<Elements elementType="test.Wheel">

<Element hashCode="1106728104" />

<Element hashCode="1106730936" />

<Element hashCode="1106733208" />

<Element hashCode="1106733208" />

</Elements>

</ArrayState>

<ObjectState hashCode="1106728104"

fieldType="test.FrontWheel">

<Fields>

<Field name="test.FrontWheel#typeCode"

hashCode="1107456976" />

<Field name="test.Wheel#pressure"

hashCode="1107435728" />

(...)

</Fields>

</ObjectState>

<PrimitiveValue hashCode="1107456976"

fieldType="java.lang.Short">

<Value primitiveType="eShortPrimitive">

2

</Value>

</PrimitiveValue>

(...)

</References>

<Classes>

(...)

<ClassState className="test.Wheel">

<Fields />

</ClassState>

<ClassState className="test.FrontWheel">

<Fields />

</ClassState>

<ClassState className="test.Car">

<Fields>

<Field name="test.Car#CAR"

hashCode="1106723384" />

</Fields>

</ClassState>

</Classes>

<Objects>

<Object name="testObject1"

hashCode="1106723384" />

</Objects>

After deserialization of the state representation from the
XML file, the original object network can be re-created.
First, an instance of the class that is represented in the ob-
ject state is created using the Objenesis library:

Object instance =

ObjenesisHelper.newInstance(objectClass);

MoMM2013 Papers Proceedings of MoMM2013

291

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

This avoids calling an object’s constructor and permits easy
instantiation of classes that do not have a no-argument con-
structor. As the complete state of the object is restored
from serialized data, processing of the constructor is not
necessary.

Then, each field is restored with its primitive value or with
a reference to an object:

for (Entry<String, ObjectState> entry

: fields.entrySet()) {

String fieldName[] =

entry.getKey().split("#", 2);

ObjectState fieldState = entry.getValue();

Class clazz = Class.forName(fieldName[0]);

Field field =

clazz.getDeclaredField(fieldName[1]);

field.setAccessible(true);

fieldState.restoreInstanceToField(field,

instance);

}

As a result, our implementation fulfills all five qualities that
we expected from our solution.

However, our solution is still not ideal. Currently, it is
only possible to save and restore application state as a whole.
Moreover, serialization and deserialization using an XML file
on the file system is relatively slow. This may result in a per-
formance issue when emulating the Java Card transaction
mechanism: Every time a transaction is started the whole
application state needs to be captured. Similarly, rollback of
a transaction requires implantation of the whole application
state.

7. CONCLUSION
In this paper, we showed that there are significant dif-

ferences between the Java Card virtual machine and other
VMs. These differences cause problems with scenarios where
Java Card applications are emulated on top of non-Java
Card VMs. However, we found that it is possible to over-
come the problems caused by different virtual machine life-
cycles by adding a persistence framework to the Java and
Dalvik virtual machines. Our solution can extract the state
of Java Card applications and store it to persistent mem-
ory. Later, this persisted state can be re-implanted into
the application (recreating all objects, references and prim-
itive values). Nevertheless, our solution is not ideal. Cur-
rently, our solution is only capable of extracting and re-
implanting application state as a whole, does not perform
any caching and is not capable of storing or reverting only
modified fields. This, however, has a big impact on perfor-
mance when it comes to modeling Java Card’s transaction
mechanism: Whenever a transaction is aborted, the state of

the whole application has to be reverted. Therefore, future
research should focus on optimization for this scenario.

We implemented and tested our concept using a simple
class hierarchy and object network to model our application
state. In the future, we intend to integrate our implementa-
tion together with jCardSim in our emulator scenarios.

8. ACKNOWLEDGMENTS
This work is part of the project“High Speed RFID”within

the EU program“Regionale Wettbewerbsfähigkeit OÖ 2007–
2013 (Regio 13)” funded by the European regional devel-
opment fund (ERDF) and the Province of Upper Austria
(Land Oberösterreich).

Moreover, this work has been carried out in cooperation
with “u’smile”, the Josef Ressel Center for User-Friendly Se-
cure Mobile Environments, funded by the Christian Doppler
Gesellschaft, A1 Telekom Austria AG, Drei-Banken-EDV
GmbH, LG Nexera Business Solutions AG, and NXP Semi-
conductors Austria GmbH.

9. REFERENCES
[1] D. Barry and T. Stanienda. Solving the Java Object

Storage Problem. Computer, 31(11):33–40, Nov. 1998.

[2] R. G. G. Cattell and D. K. Barry, editors. The Object
Database Standard: ODMG 2.0. Morgan Kaufmann
Publishers, 1997.

[3] A. Rashid and R. Chitchyan. Persistance as an aspect.
In Proceedings of the 2nd International Conference on
Aspect-oriented Software Development (AOSD), pages
120–129. Boston, MA, USA, 2003.

[4] M. Roland. Software Card Emulation in NFC-enabled
Mobile Phones: Great Advantage or Security
Nightmare? In 4th International Workshop on
Security and Privacy in Spontaneous Interaction and
Mobile Phone Use. Newcastle, UK, June 2012.

[5] M. Roland. Debugging and Rapid Prototyping of NFC
Secure Element Applications. In Mobile Computing,
Applications, and Services, LNICST. Springer, Paris,
France, Nov. 2013.

[6] SIMalliance. Open Mobile API specification, June
2012.

[7] Sun Microsystems, Inc. Java Card Platform: Runtime
Environment Specification, Version 2.2.2, Mar. 2006.

[8] Sun Microsystems, Inc. Java Card Platform: Virtual
Machine Specification, Version 2.2.2, Mar. 2006.

[9] G. Watson. ORMLite Package, Version 4.45, Mar.
2013.

[10] D. Yeager. Added NFC Reader support for two new
tag types: ISO PCD type A and ISO PCD type B.
Patches to the CyanogenMod aftermarket-firmware for
Android devices, Jan. 2012.

Proceedings of MoMM2013 MoMM2013 Papers

292

DOI 10.1145/2536853.2536870

Downloaded from
www.mroland.at

