
P
er

so
na

l u
se

 o
f t

hi
s 

m
at

er
ia

l i
s 

pe
rm

itt
ed

. P
er

m
is

si
on

 fr
om

 IE
E

E
 m

us
t b

e 
ob

ta
in

ed
 fo

r a
ll 

ot
he

r u
se

s,
 in

 a
ny

 c
ur

re
nt

 o
r f

ut
ur

e 
m

ed
ia

, i
nc

lu
di

ng
 re

pr
in

tin
g/

re
pu

bl
is

hi
ng

 th
is

 m
at

er
ia

l f
or

 
ad

ve
rti

si
ng

 o
r p

ro
m

ot
io

na
l p

ur
po

se
s,

 c
re

at
in

g 
ne

w
 c

ol
le

ct
iv

e 
w

or
ks

, f
or

 re
sa

le
 o

r r
ed

is
tri

bu
tio

n 
to

 s
er

ve
rs

 o
r l

is
ts

, o
r r

eu
se

 o
f a

ny
 c

op
yr

ig
ht

ed
 c

om
po

ne
nt

 o
f t

hi
s 

w
or

k 
in

 o
th

er
 w

or
ks

.

Applying Relay Attacks to Google Wallet
Michael Roland, Josef Langer

NFC Research Lab Hagenberg
University of Applied Sciences Upper Austria
{michael.roland, josef.langer}@fh-hagenberg.at

Josef Scharinger
Department of Computational Perception

Johannes Kepler University Linz
josef.scharinger@jku.at

Abstract—The recent emergence of Near Field Communication
(NFC) enabled smart phones resulted in an increasing interest in
NFC security. Several new attack scenarios, using NFC devices
either as attack platform or as device under attack, have been
discovered. One of them is the software-based relay attack. In
this paper we evaluate the feasibility of the software-based relay
attack in an existing mobile contactless payment system. We
give an in-depth analysis of Google Wallet’s credit card payment
functionality. We describe our prototypical relay system that we
used to successfully mount the software-based relay attack on
Google Wallet. We discuss the practicability and threat potential
of the attack and provide several possible workarounds. Finally, we
analyze Google’s approach to solving the issue of software-based
relay attacks in their recent releases of Google Wallet.

I. INTRODUCTION

The steadily increasing number of smartphone models
equipped with support for Near Field Communication (NFC)
has lead to several research activities on smartphone and
NFC security. Security critical and sensitive applications like
payment have gained a particular interest. Researchers have
performed all kinds of security evaluations of programming
interfaces (APIs), application concepts and actual implemen-
tations of payment systems. Examples are the forensic analysis
and reverse engineering of Google Wallet [2]–[4], the analysis
of secure element APIs in Android [5]–[7] and discovery of
vulnerabilities [8] in Google Wallet.

A. Relay Attack

A well-known issue with contactless payment cards and se-
cure element-enabled devices is the relay attack. First evaluated
in the context of contactless smartcards by Hancke [9] and
Kfir and Wool [10], the practicability of relay attacks has
greatly improved due to the availability of NFC-enabled mobile
phones. Francis et al. [11] showed that it is possible to relay
NFC signals over Bluetooth using two mobile phones. They
[12] further revealed that, with the introduction of software
card emulation in some smart phones, it is even possible to
relay contactless credit card transactions and electronic passport
transactions between two phones. Roland [13] further analyzed
the security implications of software card emulation.

A relay attack can be seen as a simple range extension of
the contactless communication channel (see Fig. 1). Thus, an
attack requires three components:

1) a reader device (also called mole [9]) in close proximity
to the card under attack,

This paper is a revised version of the technical report “Applying recent secure
element relay attack scenarios to the real world: Google Wallet Relay Attack”
arXiv:1209.0875 [1].

(a) without relay

(b) with relay

Figure 1. Communication between a smartcard and a reader. (Source: [1])

2) a card emulator device (also called proxy [9]) that is used
to communicate with the actual reader, and

3) a fast communication channel between these two devices.
The attack is performed by bringing the mole in proximity to
the card under attack. At the same time, the card emulator
is brought into proximity of a reader device (POS terminal,
access control reader...) Every command that the card emulator
receives from the actual reader is forwarded to the mole. The
mole, in turn, forwards the command to the card under attack.
The card’s response is then received by the mole and sent all
the way back through the card emulator to the actual reader.

This type of attack cannot be prevented by application-level
cryptography [9], [14]. The problem is that the relay attack
is a simple range extension of the contactless interface, so
neither the mole nor the card emulator needs to “understand” the
actual communication. They simply proxy any bits of data they
receive. As a consequence, current EMV credit card payment
protocols using Mag-Stripe mode as well as EMV (“Chip &
PIN”) mode can be relayed.

As existing cryptographic protocols on the application layer
cannot prevent relay attacks, several alternative methods have
been identified to prevent or hinder relay attacks [9], [10], [14]:

1) The card’s radio frequency interface can be shielded with
a Faraday cage (e.g. aluminum foil) when not in use.

2) The card could contain additional circuitry for physical
activation and deactivation.

3) Additional passwords or PIN codes could be used for
two-factor authentication.

4) Distance bounding protocols can be used on fast channels
to determine the actual distance between card and reader.

Other measures – like measurement of command delays to

DOI 10.1109/NFC.2013.6482441 
© 2013 IEEE

2013 5th International Workshop on Near Field Communication (NFC)

Downloaded from 
www.mroland.at

https://dx.doi.org/10.1109/NFC.2013.6482441
https://www.mroland.at/


Figure 2. Relay scenario: Relay software – installed on the victim’s phone
– relays commands (C-APDU) and responses (R-APDU) between the secure
element and the card emulator across a wireless network. (Source: [1])

detect additional delays induced by relay channels – have
been identified as not useful. For instance, Hancke et al. [14]
conclude that the timing constraints of ISO/IEC 14443 are too
loose to provide adequate protection against relay attacks.

While initial approaches to relay attacks [9], [10] focused on
forwarding physical layer protocols (bit transfer level), recent
approaches [7], [11], [12], [15] skip the lower layers and
directly transfer application layer protocols (APDUs, applica-
tion protocol data units). This relaxes timing requirements and
greatly improves achievable relay distances.

B. The Next Generation: Software-based Relay Attack

The threat potential of relay attacks was mitigated by the
fact that all relay scenarios required close physical proximity
to the device under attack. However, recent research [7], [15]
follows a different approach. Instead of accessing a device’s
secure element through the external (contactless) interface, it
is accessed from the device’s application processor through
the internal interface. While the original relay attack required
mole hardware in physical proximity of the device under attack,
pure software (malware) on an attacked device’s application
processor replaces the physical mole.

The complete relay system, as suggested in [7] and verified
in [15], and the flow of relayed smartcard commands (APDUs)
are shown in Fig. 2. The system consists of four parts:

1) a mobile phone (under control of its legitimate user),
2) a relay software (under control of the attacker),
3) a card emulator (under control of the attacker), and
4) a reader device (e.g. at a point-of-sale terminal).

The relay software is installed on the victim’s mobile phone.
This application is assumed to have the privileges necessary
for access to the secure element and for communicating over
a network. These privileges can be either explicitly granted to
the application or acquired by means of privilege escalation.
The relay application waits for APDU commands on a network
socket and forwards these APDUs to the secure element. The
responses are then sent back through the network socket.

The card emulator is a device that is capable of emulating a
contactless smartcard in software. The emulator has RFID/NFC
hardware that acts as a contactless smartcard when put in front
of a smartcard reader. The emulator software forwards the
APDU commands (and responses) between a network socket
and the emulator’s RFID/NFC hardware.

Command APDUs (C-APDUs) received from the reader
device are routed through the card emulator and over a wireless
network (cellular, WiFi, Bluetooth...) to the victims device.
There, the relay app forwards the C-APDUs to the secure
element. The corresponding responses (R-APDUs) generated
by the secure element are routed all the way back (through the
relay app, the wireless network and the card emulator) to the
reader device.

C. Access to the Secure Element

A critical requirement for the software-based relay attack is
that the relay software can exchange APDUs with the secure
element. Roland et al. [7] analyzed various schemes for access
control to the secure element. They concluded that, even though
some of these schemes provide sophisticated access control
capabilities, all of them have one significant flaw: They all
rely on the mobile device’s operating system (executed on the
application processor) to perform access control enforcement.
Thus, in all cases, the secure element (secure component)
blindly trusts the application processor’s (insecure component’s)
access control decisions. Therefore, once an application passes
the security checks performed by the operating system on the
application processor, it can exchange arbitrary APDUs with
the secure element. Considering the current trend in privilege
escalation exploits for various mobile device platforms (cf. [15],
[16]), we assume that an arbitrary application can use exploits
to bypass restrictions and security checks performed by the
operating system on most platforms that are currently in the
field.

II. GOOGLE WALLET

Google Wallet is a container for payment cards, gift cards,
reward cards and special offers. It consists of an Android
app with a user interface and JavaCard applets on the secure
element. The user interface is used to protect the wallet with
a PIN code, to manage the payment, gift and reward cards,
to select the currently active card, to find specific offers and to
view the transaction history. The secure element is used to store
sensitive information of the payment, gift and reward cards and
to interact with existing POS reader infrastructures. The analysis
and attack described in this paper have been performed with
version 1.1-R52v7 of the Google Wallet app and the secure
element applets installed in February 2012.

For our analysis, we added debug output to Android’s secure
element API (com.android.nfc_extras). As this is a
separate library (.jar file), we were able to modify its source
and re-compile the library. We added log messages that reveal
the name of the interface class, the name of the method, the
method parameters and the return values. We then replaced the
library’s .jar file on the device with our new one. With this
debug output we were able to monitor access to the various
methods of the API. The debug log also allowed us to trace
all APDUs exchanged between Google Wallet and the secure
element.

Upon first start, the Google Wallet app initializes the secure
element and installs a PIN code that is necessary for using
the app’s user interface. During initialization several applets
are installed and personalized on the secure element using

2013 5th International Workshop on Near Field Communication (NFC)

Downloaded from 
www.mroland.at



GlobalPlatform card management. Specifically, a secure channel
based on the secure channel protocol SCP02 is established
between the secure element and a remote server which performs
the card management through this authenticated and partly
encrypted channel.

A. Static Structure

After successful initialization, several applets can be found
on the secure element. The following is a list of applet instance
identifiers (AIDs) that have been identified to be used by either
Google Wallet during normal operation or by POS terminals
during payment transactions:

1) A000000476 2010
2) A000000476 3030
3) 325041592E5359532E4444463031
4) A000000004 1010
5) A000000004 1010 AA54303200FF01FFFF

AID 1 is the Google Wallet on-card component, which is used
by Google Wallet to manage the payment cards on the secure
element. AID 2 is the Google MIFARE access applet, which is
used to manage the MIFARE Classic 4K memory of the secure
element. Both applet instances can only be accessed from the
application processor. Selecting them though the RF interface
results in the error code 6999, denoting that the selection of
those applets failed.

The last three applet instances are related to credit card
payment transactions. AID 3 is the directory definition file of
the EMV Proximity Payment System Environment as mandated
by [17]. It contains a list of all activated credit card applications.
It can be selected from the application processor and through
the RF interface. While Google Wallet is in locked state an
empty list is returned, otherwise the list contains AID 4 and 5.

AID 4 is the AID for a regular MasterCard credit card.
We assume that the other credit card AID (AID 5) denotes
a MasterCard co-branded as Google Wallet but we have no
confirmation for this1. Both credit card applet instances contain
equal data structures (including the same primary account
number, PAN). The credit card applets are only selectable while
Google Wallet is in unlocked state, otherwise the error code
6999 is returned. Access to both applet instances is possible
from the application processor and through the RF interface.

B. Interacting with Google Wallet’s On-Card Component

Several commands used by the Google Wallet app to interact
with its on-card component have been identified:

• 00 A4 0400 07 A0000004762010 00 is used to se-
lect the on-card component.

• 80 E2 00AA 00 is used to unlock the wallet and allow
access to the credit card application after the Google Wallet
app has successfully verified the PIN. The PIN itself is not
verified by the on-card component.

• 80 E2 0055 00 is used to lock the wallet.
• 80 CA 00A5 00 returns a list containing the two credit

card instances.

1An installation with version 1.5-R79-v5 of the Google Wallet app and
version 1.6 of the on-card component installed in September 2012 reports the
second credit card AID as A0000000041010AA539648FFFF00FFFF.

• 80 F0 0100 12 4F10A0000000041010AA543032
00FF01FFFF 00 is used when the Google Prepaid card
is disabled through the Google Wallet app.

• 80 F0 0200 12 4F10A0000000041010AA543032
00FF01FFFF 00 is used when the Google Prepaid card
is enabled through the Google Wallet app.

C. Google Prepaid Card: A MasterCard PayPass Card

The credit card applet is based on the EMV Contactless
Specifications for Payment Systems and is a MasterCard PayPass
card. It supports Mag-Stripe mode with dynamic CVC3 (card
verification code) and requires online transactions. Full EMV
mode is not supported. Also there is no cardholder verification.
Even though, PIN-based cardholder verification would signif-
icantly complicate relay attacks or would even render them
impossible if the attacker is unable to “guess” the PIN.

A typical Mag-Stripe mode transaction with the Google
Prepaid card consists of the following command sequence (cf.
[1] for a detailed analysis of a Mag-Stripe transaction):

1) POS → Card: 00 A4 0400 0E 325041592E535953
2E4444463031 00: Select Proximity Payment System
Environment (PPSE).

2) Card → POS: 6F3A 840E325041592E5359532E
4444463031 A528 BF0C25 6115 4F10A00000
00041010AA54303200FF01FFFF 870101 610C
4F07A0000000041010 870102: Respond with a
list of supported EMV payment applications and their
priority indicators.

3) POS → Card: 00 A4 0400 10 A0000000041010AA
54303200FF01FFFF 00: Select MasterCard Google
Prepaid card.

4) Card → POS: 6F20 8410A0000000041010AA54
303200FF01FFFF A50C 500A4D617374657243
617264: Respond with application details (here: appli-
cation label “MasterCard”).

5) POS → Card: 80 A8 0000 02 8300 00: Get process-
ing options.

6) Card → POS: 770A 82020000 940408010100:
Respond with the application interchange profile (Mag-
Stripe only, online transactions only, no cardholder ver-
ification...) and the location of the Mag-Stripe data file
(elementary file 1, one record starting at record 1).

7) POS → Card: 00 B2 010C 00: Read record 1 of record
data file 1 (Mag-Stripe data).

8) Card → POS: 706A 9F6C020001 9F62060000000
00038 9F63060000000003C6 5629423534333
0xxxxxxxx30xxxx37xxxxxxxx5E202F5E313731
3131303130303130303030303030303030 9F64
0104 9F65020038 9F660203C6 9F6B135430
xxxx0xx7xxxxD17111010010000000000F 9F67
0104: Respond with the Mag-Stripe version, track 1
and track 2 information.

9) POS → Card: 80 2A 8E80 04 nnnnnnnn 00: Com-
pute cryptographic checksum for a given unpredictable
number nnnnnnnn.

10) Card → POS: 770F 9F6102zzzz 9F6002yyyy
9F3602xxxx: Respond with the application transaction

2013 5th International Workshop on Near Field Communication (NFC)

Downloaded from 
www.mroland.at



counter (xxxx) and dynamically generated CVC3 for
track 1 (yyyy) and track 2 (zzzz).

Most of the data exchanged in a Mag-Stripe transaction is
static for all transactions (e.g. the Mag-Stripe data). Compute
cryptographic checksum (9 and 10) is the only APDU com-
mand/response pair that contains dynamically generated data
that differs for each transaction: the unpredictable number gen-
erated by the POS, and the transaction counter and CVC3 codes
generated by the card. Each compute cryptographic checksum
command that is sent to the card must be preceded by a fresh
get processing options (5 and 6) command. Thus, the minimum
sequence for generating a dynamic CVC3 is

1) Select MasterCard Google Prepaid card (3 and 4),
2) Get processing options (5 and 6),
3) Compute cryptographic checksum (9 and 10).

III. GOOGLE WALLET RELAY ATTACK

We applied the software-based relay attack scenario to
Google Wallet to verify its applicability. Google Wallet has been
chosen for several reasons:

• Google Wallet already has a huge user base2.
• It complies with EMV payment standards and can be used

with any point-of-sale terminal that supports MasterCard
PayPass.

• Due to Android being an open source system, it was
fairly easy to explore the Android NFC stack. Also, we
could easily implement monitoring of Google Wallet’s
interaction with the secure element.

• Google Wallet is well-known for being used on rooted
devices which means that the operating system’s security
measures are already weakened/bypassed on those devices.

A. The Relay App

The relay app, a purely Java-based Android app, is a sim-
ple TCP client that maintains a persistent TCP connection
to a remote server (the card emulator). When the card em-
ulator requests access to the secure element, a connection
is established through Android’s hidden3 secure element API
(class NfcExecutionEnvironment in com.android.
nfc_extras). The app first selects the Google Wallet on-card
component and sends the unlock command. This imitates the
behavior of the Google Wallet app upon successful PIN entry
by the user. The relay app then listens for command APDUs on
its network interface and forwards them to the secure element.
The response APDUs from the secure element are transmitted
back to the card emulator. When the transaction is complete,
the Google Wallet on-card component is selected again and the
lock command is used to lock the wallet.

For this test scenario, the relay app has been manually
granted the permissions necessary to access the secure element.
On Android 2.3.7, this was done by loosening the restric-
tions for access to the secure element API in a customized
firmware. On Android 4.0.3, the relay app’s signature was
added to the secure element permissions file (/system/etc/

2Google Play Store listed more than 500,000 installations in early 2012. As
of September 2012 Google Wallet has already over 1,000,000 installations.

3I.e. not included in the public Android API documentation.

Figure 3. Card emulator made from a notebook and an ACS ACR 122U NFC
reader. (Source: [1])

nfcee_access.xml). Root access to the device was neces-
sary in all cases. Instead of manually granting the permissions,
privilege escalation exploits could be integrated into future ver-
sions of the app to automate this process. For easy integration
of future exploits, a privilege escalation framework (cf. [18])
could be embedded into the app.

For the purpose of our tests, the relay app has a foreground
component that needs to be started manually and provides
configuration options like the IP address of the card emulation
server. Moreover, app requires user confirmation to establish the
connection to the card emulator. However, for an actual attack,
the app could be started automatically on device boot-up and
run completely in the background.

B. The Card Emulator

The card emulator (Fig. 3) has been built from an ACS
ACR 122U NFC reader and a notebook computer (running a
card emulation server application). The ACR 122U supports
software card emulation mode and is available for less than
EUR 50 (including taxes and shipping) from touchatag.com.
Several examples on how to use this device in card emulation
mode can be found on the web.

The card emulation software (written in Python) contains a
TCP server that listens for incoming connections from the relay
app. Once a TCP connection has been established, the emulation
server puts the ACR 122U into card emulation mode and waits
for commands from a POS terminal. When the card emulator
detects activation by a POS terminal (or any other smartcard
reader), it requests access to the secure element through the
relay app. Then, all received command APDUs are forwarded
through the network interface to the relay app and all response
APDUs received from the relay app are returned to the POS
terminal. When the ACR 122U leaves the range of the POS
terminal (RF field is no longer detected), the connection to the
secure element is closed.

C. Test with a real Point-of-Sale (POS) Terminal

We successfully tested the Google Wallet relay attack by
paying at a POS terminal. The POS terminal used for our
test was a Hypercom Artema Hybrid with a ViVOtech ViVO-
pay 5000 contactless reader. For ethical reasons we used our
own credit card terminal instead of a POS installation in

2013 5th International Workshop on Near Field Communication (NFC)

Downloaded from 
www.mroland.at



the field. However, our POS terminal is identical to those
used in recent roll-outs at Schlecker and Zielpunkt in Aus-
tria. Videos of the successful relay attack are available on
YouTube: http://www.youtube.com/watch?v=hx5nbkDy6tc and
http://www.youtube.com/watch?v= R2JVPJzufg.

IV. DISCUSSION

An NFC reader device (available for less than EUR 50),
a notebook computer and some average programming skills
are all that was necessary to mount this attack. However, we
admit that, while using the ACR 122U together with a notebook
computer worked in our controlled environment, this setup will
certainly raise suspicions when used to pay in a store.

An alternative approach would be to use another mobile
phone as card emulator. Francis et al. [12] showed that a credit
card can be emulated using a BlackBerry 9900 in software card
emulation mode. Other NFC-enabled BlackBerry devices, like
the BlackBerry 9380, can be used as well. Changes introduced
to the CyanogenMod 9.1 aftermarket firmware for Android
enable software card emulation on Android devices (cf. [13]).
A mobile phone has several advantages:

• accepted form factor for mobile contactless transactions,
• same network interfaces as the device under attack, and
• a BlackBerry 9380 is available for less than EUR 300.

A. Getting the Relay App on Devices

To roll out the relay app to user’s devices, it could be
integrated into any existing app downloaded from Google
Play Store. The infected app could then be re-published on
Google Play Store under similar (or even identical) publisher
information and with the same app name as its original. The
publisher account that is necessary to re-publish the app costs
EUR 20.

For many users it would be difficult to distinguish the original
app from the malware, as these apps would only differ in the
number of installs and user comments. To specifically target
users of rooted devices, an app that already requires root
permissions could be used as a base for code injection.

Google started to combat this approach with their recent
updates to the Google Play Developer Program Policy.

B. Transaction Limits

In Austria, PIN-less contactless transactions are usually lim-
ited to EUR 25. However, experience reports on the Internet
suggest that Google Wallet can be used for transactions of at
least up to USD 100 (approx. EUR 75). An attacker would
typically not attack a single Google Wallet device, but instead
distribute transactions on many devices infected with the relay
app. Thus, an attacker could build a “bot network” of Google
Wallets. This method has the advantage that each wallet would
be charged less, which might cover the attack for a longer
period. Also, the attacker could use the “bot network” to select
a device with a good (i.e. stable and fast) network connection.

C. Improving the Attack

The analysis [15] of communication delays induced by a
relay attack reveals that the relay channel adds a significant
portion of the overall command/response delay. This results in

a noticeable slow-down of relayed transactions in comparison
to direct transactions. One possibility to improve the speed of
relayed transactions is to cache all static transaction data and
only transmit dynamically generated data during the transaction.
Thus, only the dynamic fields of the get processing options
command/response pair need to be exchanged. All other data
can be retrieved from the Google Wallet device prior to the
attack. This reduces the number of bytes exchanged over the
relay channel during a transaction from 296 bytes to 10 bytes.

D. Possible Workarounds

We identified several possible workarounds. Each of them
has its advantages and disadvantages.

1) Timeouts of POS Terminals: An easy, but potentially un-
reliable, measure to prevent relay attacks would be the enforce-
ment of short timeouts (e.g. the benchmark targets specified by
the EMV specifications) for payment transactions on the POS
terminals. Transactions taking longer than this timeout should
be interrupted or discarded. While this measure will prevent
most long-distance relay scenarios, relays over shorter distances
and fast communication channels might not be rejected. Also,
such tight timeouts will prevent cloud-based EMV applications
(cf. [13] and YES-wallet, http://www.yes-wallet.com/).

2) Google Wallet PIN Verification:
“A PIN and the ability to remotely disable Google
Wallet make it very safe.” [19]

In version 1.1-R52v7 of the Google Wallet app, the PIN that
protects the wallet is only verified within the mobile phone
app. Simple lock and unlock commands are used to control
the state of the on-card component instead of on-card PIN
verification. This, once more, delegates access control for a
secure component (Google Wallet on-card component and credit
card applets) to a potentially insecure component (application
processor). The on-card component does not verify this PIN.

PIN verification could be handled by the on-card component
on the secure element. After all, PIN verification is a core
component of smartcards anyways. In that case, the attacker
would need to know the wallet’s PIN in order to conduct a
successful attack.

Another approach would be to require PIN entry and online
PIN verification at the point-of-sale for any transaction amount.
However, this is impracticable or even impossible at certain
points-of-sale.

3) Disabling Internal Mode Communication for Payment
Applets: Modern secure elements (like those embedded into
Google’s Nexus devices) provide instruments to distinguish
between external communication (RF contactless interface) and
internal communication (application processor) from within a
JavaCard applet. Rules for interface based access can be applied
on a per-applet basis and even on a per-APDU basis. These
capabilities could be used to disable internal mode communi-
cation for all payment applets and consequently disable their
vulnerability for software-based relay attacks.

The disadvantage of this workaround is that the secure
element cannot be used for future on-device secure payment
applications (e.g. EMV-based authorization of payment trans-
actions in the mobile phone’s web browser). Such applications

2013 5th International Workshop on Near Field Communication (NFC)

Downloaded from 
www.mroland.at

http://www.youtube.com/watch?v=hx5nbkDy6tc
http://www.youtube.com/watch?v=_R2JVPJzufg
http://www.yes-wallet.com/


would, however, be one of the key benefits of having a secure
element inside a mobile phone.

V. REPORTING AND INDUSTRY RESPONSE

We reported our findings and proposed workarounds to Goo-
gle (and some of their Google Wallet partners) in April 2012.
Google quickly acknowledged the problem and confirmed that
they could reproduce the attack. Our tests in June 2012 revealed
that new installations of Google Wallet (i.e. secure element
applets provisioned in June) were no longer vulnerable to our
relay attack setup. Further testing in September 2012 showed
that users of older versions of Google Wallet are now required to
update to the latest version. This forces existing users to receive
the necessary fixes of the secure element applets. Therefore, we
assume that Google Wallet users are no longer vulnerable to the
relay attack scenario described in this paper.

VI. ANALYSIS OF THE RELAY-IMMUNE GOOGLE WALLET

Version 1.6 of the Google Wallet on-card component (in-
stalled with version 1.5-R79-v5 of Google Wallet in September
2012) is no longer vulnerable to the software-based relay attack
setup described in this paper. The relay attack is inhibited by
the fact that the select command fails for both MasterCard
credit card applet instances (A000000004 1010 and A00000
0004 1010 AA539648FFFF00FFFF) with the error code
6999. Thus, access to the credit card applet from the ap-
plication processor has been disabled as we suggested (cf.
section IV-D3). The Proximity Payment System Environment
can still be selected though both internal and external mode.

The on-card component can still only be selected through
internal mode. It now returns its version number upon selec-
tion and some commands for interaction with it have slightly
changed their parameters. The commands for switching between
locked and unlocked state of the wallet are still the same. As a
result, it is still possible to unlock Google Wallet and the credit
card contained in it without PIN verification. Consequently, a
malicious application could enable the credit card on the RF
contactless interface even though Google Wallet is protected
by a PIN that is not known to the malicious application.

VII. CONCLUSION

In this paper we examined the feasibility of the software-
based relay attack based on the mobile contactless payment
application Google Wallet. We analyzed the communication
between the Google Wallet app and the secure element, as well
as the interaction between a point-of-sale credit card terminal
and the Google Wallet device. Then, we used this information to
create a prototype relay setup. With this setup we could confirm
that Google Wallet was indeed vulnerable to the software-
based relay attack. On the one hand, the credit card applets in
the secure element were not sufficiently protected from access
through apps on the application processor. On the other hand,
the PIN protection of Google Wallet can be bypassed as the
on-card component does not verify the PIN itself but instead
can be controlled by simple lock and unlock commands. Google
responded to our finding by fixing the vulnerability to software-
based relay attacks. However, bypassing the PIN is still possible
with the current version of the wallet.

ACKNOWLEDGMENT

This work is part of the project “4EMOBILITY” within the
EU programme “Regionale Wettbewerbsfähigkeit OÖ 2007–
2013 (Regio 13)” funded by the European regional develop-
ment fund (ERDF) and the Province of Upper Austria (Land
Oberösterreich).

REFERENCES

[1] M. Roland, “Applying recent secure element relay attack scenarios
to the real world: Google Wallet Relay Attack,” Technical Report,
arXiv:1209.0875 [cs.CR], Sep. 2012, http://arxiv.org/abs/1209.0875.

[2] A. Hoog, “Forensic security analysis of Google Wallet,” viaForensics Mo-
bile Security Blog, Dec. 2011, https://viaforensics.com/mobile-security/
forensics-security-analysis-google-wallet.html.

[3] C. Benninger, “A Brave New Wallet – First look at
decompiling Google Wallet,” Intrepidus Group Insight,
Sep. 2011, http://intrepidusgroup.com/insight/2011/09/
a-brave-new-wallet-first-look-at-decompiling-google-wallet/.

[4] N. Elenkov, “Exploring Google Wallet using the secure element interface,”
Android Explorations, Aug. 2012, http://nelenkov.blogspot.com/2012/08/
exploring-google-wallet-using-secure.html.

[5] N. Elenkov, “Accessing the embedded secure element in Android 4.x,”
Android Explorations, Aug. 2012, http://nelenkov.blogspot.com/2012/08/
accessing-embedded-secure-element-in.html.

[6] N. Elenkov, “Android secure element execution environment,” An-
droid Explorations, Aug. 2012, http://nelenkov.blogspot.com/2012/08/
android-secure-element-execution.html.

[7] M. Roland, J. Langer, and J. Scharinger, “Practical Attack Scenarios on
Secure Element-enabled Mobile Devices,” in Proceedings of the Fourth
International Workshop on Near Field Communication (NFC 2012),
Helsinki, Finland, Mar. 2012, pp. 19–24.

[8] J. Rubin, “Google Wallet Security: PIN Exposure Vulnera-
bility,” zveloBLOG, Feb. 2012, https://zvelo.com/blog/entry/
google-wallet-security-pin-exposure-vulnerability.

[9] G. P. Hancke, “A Practical Relay Attack on ISO 14443 Proximity Cards,”
Jan. 2005, http://www.rfidblog.org.uk/hancke-rfidrelay.pdf.

[10] Z. Kfir and A. Wool, “Picking Virtual Pockets using Relay Attacks on
Contactless Smartcard,” in Proceedings of the First International Con-
ference on Security and Privacy for Emerging Areas in Communications
Networks (SECURECOMM’05), Sep. 2005, pp. 47–58.

[11] L. Francis, G. P. Hancke, K. E. Mayes, and K. Markantonakis, “Practical
NFC Peer-to-Peer Relay Attack Using Mobile Phones,” in Radio Fre-
quency Identification: Security and Privacy Issues, ser. LNCS. Springer
Berlin Heidelberg, 2010, vol. 6370/2010, pp. 35–49.

[12] L. Francis, G. P. Hancke, K. E. Mayes, and K. Markantonakis, “Practical
Relay Attack on Contactless Transactions by Using NFC Mobile Phones,”
Cryptology ePrint Archive, Report 2011/618, 2011, http://eprint.iacr.org/
2011/618.

[13] M. Roland, “Software Card Emulation in NFC-enabled Mobile Phones:
Great Advantage or Security Nightmare?” in 4th International Workshop
on Security and Privacy in Spontaneous Interaction and Mobile Phone
Use, Newcastle, UK, Jun. 2012, http://www.medien.ifi.lmu.de/iwssi2012/
papers/iwssi-spmu2012-roland.pdf.

[14] G. P. Hancke, K. E. Mayes, and K. Markantonakis, “Confidence in smart
token proximity: Relay attacks revisited,” Computers & Security, vol. 28,
no. 7, pp. 615–627, 2009.

[15] M. Roland, J. Langer, and J. Scharinger, “Relay Attacks on Secure
Element-enabled Mobile Devices: Virtual Pickpocketing Revisited,” in
Information Security and Privacy Research, ser. IFIP AICT. Springer
Boston, Jun. 2012, vol. 376/2012, pp. 1–12.

[16] J. Rubin, “Google Wallet Security: About That Rooted Device
Requirement...” zveloBLOG, Feb. 2012, https://zvelo.com/blog/entry/
google-wallet-security-about-that-rooted-device-requirement.

[17] EMV Contactless Specifications for Payment Systems – Book B: Entry
Point Specification, EMVCo Spec., Version 2.1, Mar. 2011.

[18] S. Höbarth and R. Mayrhofer, “A framework for on-device privilege
escalation exploit execution on Android,” in 3rd International Workshop
on Security and Privacy in Spontaneous Interaction and Mobile Phone
Use, San Francisco, CA, USA, Jun. 2011.

[19] “Google Wallet – How it works – In-store,” http://www.google.com/
wallet/how-it-works/in-store.html, Sep. 2012.

2013 5th International Workshop on Near Field Communication (NFC)

Downloaded from 
www.mroland.at

http://arxiv.org/abs/1209.0875
https://viaforensics.com/mobile-security/forensics-security-analysis-google-wallet.html
https://viaforensics.com/mobile-security/forensics-security-analysis-google-wallet.html
http://intrepidusgroup.com/insight/2011/09/a-brave-new-wallet-first-look-at-decompiling-google-wallet/
http://intrepidusgroup.com/insight/2011/09/a-brave-new-wallet-first-look-at-decompiling-google-wallet/
http://nelenkov.blogspot.com/2012/08/exploring-google-wallet-using-secure.html
http://nelenkov.blogspot.com/2012/08/exploring-google-wallet-using-secure.html
http://nelenkov.blogspot.com/2012/08/accessing-embedded-secure-element-in.html
http://nelenkov.blogspot.com/2012/08/accessing-embedded-secure-element-in.html
http://nelenkov.blogspot.com/2012/08/android-secure-element-execution.html
http://nelenkov.blogspot.com/2012/08/android-secure-element-execution.html
https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability
https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability
http://www.rfidblog.org.uk/hancke-rfidrelay.pdf
http://eprint.iacr.org/2011/618
http://eprint.iacr.org/2011/618
http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-roland.pdf
http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-roland.pdf
https://zvelo.com/blog/entry/google-wallet-security-about-that-rooted-device-requirement
https://zvelo.com/blog/entry/google-wallet-security-about-that-rooted-device-requirement
http://www.google.com/wallet/how-it-works/in-store.html
http://www.google.com/wallet/how-it-works/in-store.html



