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ABSTRACT
With the increasing popularity of security and privacy sen-
sitive systems on mobile devices, such as mobile banking,
mobile credit cards, mobile ticketing, or mobile digital iden-
tities, challenges for the protection of personal and security
sensitive data of these use cases emerged. A common ap-
proach for the protection of sensitive data is to use additional
hardware such as smart cards or secure elements. The com-
munication between such dedicated hardware and back-end
management systems uses strong cryptography. However,
the data transfer between applications on the mobile device
and so-called applets on the dedicated hardware is often
either unencrypted (and interceptable by malicious software)
or encrypted with static keys stored in applications. To
address this issue we present a solution for fine-grained se-
cure application-to-applet communication based on Secure
Remote Password (SRP-6a), an authenticated key agreement
protocol, with a user-provided password at run-time. By
exploiting the Java Card cryptographic API and minor adap-
tations to the protocol, which do not affect the security, we
were able to implement this scheme on Java Cards with
reasonable computation time.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls,
Information flow controls.

General Terms
Security, Verification

Keywords
Java Card, smart card, SRP-6a, secure channel, secure ele-
ment, mobile devices
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1. INTRODUCTION
Nowadays, mobile devices such as mobile phones, tablets or

smart watches have become an indispensable part of our daily
life, but are encountering many security threats [24,25,29].
They can not only be easily stolen or lost, but also face
attacks from malicious third-party applications. We also
have to be aware that the flash memory on these mobile
devices can not be trusted and unauthorized individuals have
the possibility to gain personal, business, or other security
and privacy sensitive data from that memory. To provide a
secure environment for storing data, applications often use
an additional tamper resistant hardware, like smart cards or
secure elements. Special variants of them run with Java Card
technology, which allows the execution of small Java-based
applications (applets). One advantage of these tamper resis-
tant units is the protection of data and executed code against
various physical and software attacks. Communication be-
tween the card and an off-card application is only possible
through a standardized interface for exchanging so-called
Application Protocol Data Units (APDU). There are many
applications that take advantage of this tamper resistance by
storing master passwords on the hardware [28, 32]. However,
when using smart cards for applications, it is important to
consider that the communication outside the applet is not
automatically secured. This is especially relevant in an en-
vironment where malicious third-party applications could
eavesdrop on the data transfer.

The main motivating goal in this paper is to provide an
infrastructure for third-party applications on mobile devices
to securely communicate through a password-authenticated
secure channel with applets running on the Java Card. In
an infrastructure where applications running on the main
processor also have a corresponding applet running on the
tamper resistant environment, they could then use this addi-
tional hardware module to securely store security and privacy
sensitive data. A mobile web browser could, for example,
use it to store passwords. Or, company services could use
it for storing private keys for corporate VPN access. The
advantage of additional hardware is that malware running on
the device would not have the possibility to directly read this
password storage. Even if these passwords were encrypted
on the flash memory using a master password, an attacker
would still be able to brute-force this master password us-
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ing an offline dictionary attack. Although there are ways to
make brute-force attacks on encrypted user-chosen passwords
harder (e.g. using a key-derivation function) this remains
problematic as users tend to use weak and easily guessable
passwords on mobile devices [6, 26].

There are existing protocols for current smart cards that
provide secure communication between the card and an off-
card application. The respective standards are defined by
GlobalPlatform (GP)1. However, these standards only pro-
vide a secure interface for managing applications (installation,
removal, etc.) and card-specific data (e.g. personalization
of applications with user-specific data). A secure channel
is established between a back-end server and a security do-
main on the card using a shared secret. Consequently, using
this secure management channel from within a mobile de-
vice application to communicate with the applets would
require that shared secret to be stored within the application
data. An attacker who gained access to that shared key
could therefore access and manipulate that security domain
with all contained applets and data. To protect the data
of each application, a more fine-grained secure channel for
application-to-applet transmission is needed [22]. In this
paper we address this issue by proposing an implementation
of a fine-grained secure channel that is authenticated with a
user-provided PIN or password, compatible to current Java
Cards and time efficient for the user.

For the implementation of this channel we use the Se-
cure Remote Password protocol in its latest revision (SRP-
6a) [37, 38]. SRP is a password-authenticated key agreement
protocol which is based to the Diffie-Hellman key exchange
and can be either constructed from or reduced to Diffie-
Hellman [12,37]. The main extensionis that a Diffie-Hellman
key exchange is not authenticated while SRP can be used
for password-based mutual authentication over insecure com-
munication channels. Besides SRP, there are multiple other
similar password-authenticated key agreement (PAKE) pro-
tocols such as SPEKE [23], J-PAKE [20], EKE [5], OKE [27],
AuthA [4], and others. There are also PAKE variants which
make use of elliptic curve cryptography (ECC). While it
has been shown that elliptic curve cryptography is faster
than other public key algorithms [16,18], the usage of such
protocols is restricted on Java Cards due to the limitations
in terms of ECC support. In the current Java Card 3.0,
it is still not possible to perform ECC primitives (such as
point addition or multiplication). Although there are smart
card manufacturers that add proprietary classes to support
such functionality, using them would limit the interoperabil-
ity of an implementation. Finally, we chose SRP because
it can be used without any licensing, has no known flaws
in its current implementation and is already included in
other cryptographic protocols such as TLS [35]. However,
one disadvantage of this protocol is the high complexity of
computations due to modulo operations on big numbers.
Therefore, a pure software implementation of this protocol
on a Java Card with severe restrictions such as an 8-bit CPU
and little memory is very time-consuming and not practical.
In this paper we present a solution on how to execute SRP on
low-end hardware platforms within a reasonable authentica-
tion time and an overall protocol runtime below four seconds.
In our terms, we define reasonable authentication time as
the time a user is willing to wait for a secure channel to be

1http://www.globalplatform.org/

authenticated after password entry. Based on the Nielsen
Norman Group, we assume that this value is below 1 second2.
The key points and main contributions of our approach are:

• Implementation of a password-authenticated secure
channel protocol on Java Cards, which is suitable for
comparably weak passwords and does not require to
store credentials in the mobile device flash memory, by
exploiting the RSA public key encryption operation for
a significant increase in computation performance.

• Minor adaptations to the SRP protocol scheme to opti-
mize verification time after PIN/password entry.

• Memory optimizations to reduce required transient and
persistent memory during protocol execution.

• An open source implementation for developers.

2. RELATED WORK
There have been multiple previous publications in the area

of providing an authenticated channel for Java Card applets.
From an industry standardization point of view, the GP
Secure Channel Protocols (SCP) are one of the most rele-
vant ones. The GP specification defines standards for secure
channel protocols, namely SCP01, SCP02 and SCP03, to
establish secure communication between a Java Card and
an off-card application. According to GP Card Specification
2.2 [17], there are two ways in which an applet could han-
dle a secure channel, namely Direct Handling and Indirect
Handling. In Direct Handling, an applet is fully responsible
for implementing the protocol and defining its own security
domain. The other approach is Indirect Handling where
the applet uses ready made services provided by security
domains to handle the SCP. This enables the applet to be
implemented independently from the protocol and leaves
secure channel related computation to the security domain
it belongs to.

One of the main advantages in using a GP SCP for secure
application-to-applet communication is that it is an industry
standard and a widely-used protocol with API support on
Java Cards. For our use cases we consider the off-card
environment as potentially insecure while we trust in the
security of the Java Card. Since GP SCP authentication
relies on static shared keys between communicating parties,
the insecurity of the off-card application breaks the security
of the protocol. These limitations force us to look into
other password-based authentication schemes for a more
fine-grained secure channel protocol.

Various previous papers have been published that make
use of the Java Card crypto API to execute modulo opera-
tions on the card’s cryptographic co-processor for an efficient
implementation of different protocols. Sterckx et al. [34] dis-
cuss simplified methods to use Direct Anonymous Attestation
(DAA) [9] on Java Cards. As many other cryptographic pro-
tocols, DAA also involves computation of modulo operations
on big numbers. In their paper they show that these modulo
operations can be computed more efficiently with the help
of the cryptographic co-processor compared to a pure soft-
ware implementation. Tews et al. [36] show different RSA
variants and performance measurements of Brands’ proto-
cols for zero-knowledge proof [8]. This paper also proposes

2http://www.nngroup.com/articles/
response-times-3-important-limits/
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an efficient implementation of a protocol by exploiting the
Java Card crypto API to perform modulo operations on the
cryptographic co-processor.

Our implementation of big numbers and modular arith-
metic in the Java Card applet is based on this previous
scientific work.

3. THREAT MODEL
Our approach for implementing SRP on smart cards is

based on the Android platform due to availability of open
source projects which enable access to smart cards and secure
elements. In addition to this, the openness of the platform
makes it easier to analyse different types of attacks. Hence
we use the Android Operating System (OS) to specify our
threat model categories (Fig. 1 gives an overview of these
categories in a mobile device context):

1. Channel attacks. The Android OS has built-in secu-
rity features which protect applications against different
types of threats. One of these features is application
sandboxing. Every Android application has a unique
user ID that is assigned at install time. At run-time,
an application runs in a sandbox where communication
to other applications is made possible via Inter Process
Communication (IPC) facilities. One IPC facility used
in our implementation is a service. Android services are
application components that are used to handle long
running tasks in the background. They also provide a
client-server interface which can be used by different
applications to request specific functions of a service.
One of the possible channel attacks on Android ap-
plications which make use of IPC facilities is service
hijacking. This happens when an application creates
a connection with a malicious service instead of the
intended one [10]. With such kind of possibilities, an
attacker can gain full control over the message exchange
between an application and Java Card applets, which
creates a suitable condition for active channel attacks.

2. Attack on application level. This sort of attack can
come from mobile applications as well as over NFC:

(a) Malicious applications: We consider two different
threats from malicious applications: (i) the first
threat can be caused by an application that has
been granted root privileges or that uses privilege
escalation exploits [21]. Such kind of malware
can access application private storage and conduct
different attacks on the content (e.g. brute-force
attack on encrypted passwords). (ii) in the second
threat, the malware does not need root privileges,
but makes use of smart card services (cf. [31]).
If a malicious application has sufficient privileges
to access smart card services, it can impersonate
a legitimate application and try to brute-force
the password to establish a channel to the applet.
With methods discussed in this paper, the first
threat is avoided while the second should, in the
worst case, end up with denial of service.

(b) Attacks from an external card reader: Usually,
smart cards and secure elements can be accessed
from an external card reader through either the
contact or contact-less interfaces. An attacker who
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Figure 1: Overview of our threat model. The arrows depict
the secure channel between application and applet.

has physical access to the card and the mobile de-
vice or an attacker who is able to communicate
with the smart card over Near Field Communi-
cation (NFC) could launch the same attacks as a
malware mobile application. Additionally, we also
have to consider attack scenarios over the contact-
less interface (e.g. relay attacks over NFC [19]).

(c) User interface (UI) masquerading or control by ma-
licious entity: Mobile malware that gains control
over the UI (i.e. finds methods to listen to users’
input), or is faking the UI, can steal users’ pass-
words, which could result in severe consequences.
This is especially problematic when the user is
not aware of the compromised password. These
threats are out of scope of this paper but could
potentially be addressed by using a trusted ex-
ecution environment (TEE) for secure password
input (e.g. TrustZone3). Hence, the password for
establishing a secure channel cannot be stolen by
a malicious application. However, the methods
discussed in this paper would still help to secure
the data path between application and applet after
password entry.

4. SECURE REMOTE PASSWORD (SRP)
The SRP protocol was introduced by Wu [37] in 1998 and

is a password-authenticated key agreement protocol that can
be used over insecure channels for providing password-based
secure key agreement and authentication. Similar to Diffie-
Hellman key exchange [12], an eavesdropper is not able to
guess the computed session key even with the knowledge of
the complete data transfer. The big advantage of SRP in
comparison to Diffie-Hellman is that SRP provides password-
based mutual authentication. Additionally, the properties
of SRP make the protocol resistant against most prominent
attacks (e.g. off-line dictionary attacks, replay attacks, etc.)

4.1 SRP Key Exchange Procedure
Scheme 1 describes the steps of the original SRP protocol.

Communication between both parties is generally separated
into two phases: (i) a key agreement phase where both parties
calculate the shared secret (steps 1-5 in Scheme 1) and (ii) a
mutual verification phase where they authenticate each other

3TrustZone white paper at: http://www.arm.com/products/
processors/technologies/trustzone/index.php
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Client Server

1. I−→ (lookup s, v)

2. x = H(s, I, P )
s←−

3. A = ga A−→ B = kv + gb

4. u = H(A,B) B←− u = H(A,B)

5. S = (B − kgx)a+ux S = (Avu)b

6. M1 = H(A,B, S) M1−−→ (verify M1)

7. (verify M2) M2←−− M2 = H(A,M1, S)

8. K = H(S) K = H(S)

Scheme 1: Original SRP-6a protocol scheme as described by
Wu in [38].

Table 1: SRP protocol notation [37].

g, n
The generator g and a large prime modulo number
n for all computations

s A random user’s salt for the password

I, P Identifier and password of the user

k
Constant multiplier, computed from the hash of the
modulo and concatenated with g

x Private key derived from identifier, password and salt

v The password verifier calculated from gx

u Random scrambling parameter, publicly revealed

a, b
Ephemeral private keys, generated randomly and not
publicly revealed

A,B Corresponding public keys

H(·) One-way hash function

K Computed session key

(steps 6-8 in Scheme 1). For the key agreement phase, public
keys A and B are calculated by modular exponentiation with
a private key exponent a and b. On the server-side, the public
part gb is additionally XORed with the password verifier v
multiplied by constant k [38] (steps 1-4).

After exchanging public parameters A and B, the client
computes the shared secret S based on the user identifica-
tion (identifier I and password P ), while the server does the
same using the pre-computed verifier v (step 4 in Scheme 1).
Based on this shared secret both parties have to mutually
authenticate each other in the verification phase. This is
done by exchanging the verifiers M1 and M2 with the cor-
responding opposite party (steps 6-7). Then both parties
ensure that legitimate values of the client password x and
the server verifier v are used in the key agreement phase.
After this verification, they compute the same session key
K = H(S) (step 8) and use this as basis for securing future
data transfers against eavesdroppers or active attackers. A
list of all SRP protocol notations can be found in Table 1.

4.2 Proposed Protocol Adaptations for Java
Card Applets

To improve computation time and memory usage of the
protocol on a Java Card, we made minor changes to the SRP
protocol (changes are highlighted in bold font in our protocol
Scheme 2). First, we combine the transmission of the server’s
public key B with the user’s salt s. The current revision of

Client Server

1. A = ga A−→ B = kv + gb

2. u = H(A,B) B,sB,sB,s←−− u = H(A,B)

3. x = H(s, P )

4. S = (B − kgx)a+ux S = (Avu)b

5. K = H(S)K = H(S)K = H(S) K = H(S)K = H(S)K = H(S)

6. M1 = H(uuu, S) M1−−→ (verify M1)

7. (verify M2) M2←−− M2 = H(uuu,M1, S)

Scheme 2: Our protocol implementation based on the current
revision of the SRP protocol [38] with minor changes to
improve memory consumption and performance on the Java
Card (server-side). Differences to the original SRP protocol
are highlighted in bold font.

SRP-6a uses an additional round of transmission to agree
on the identifier I and the salt s at the beginning [38]. In
our elaborated use case of fine-granular application-to-applet
communication, we only need one secure channel instance for
each applet. Therefore, we do not need an identifier as we
only have one verifier v – which is computed during applet
installation – and can directly start the communication by
sending the public key A to the Java Card (see steps 1 and
2 in Scheme 2). This reduces the amount of required round
trips from 3 to 2 (a similar approach was also suggested as
an optimized version in the original protocol publication,
cf. [37]).

The second adaptation influences the sequence of calcu-
lating the session key K. Usually, this key is calculated
after the mutual verification phase (see step 8 in the original
SRP protocol Scheme 1). To reduce the time required for
the verification (step 6 and 7 in Scheme 2), we moved the
calculation of K to the key agreement phase (steps 1 to 5
in Scheme 2). On the server-side (the smart card), this first
key agreement phase does not require any authentication of
the user and can therefore be done before or while the user
is typing password or PIN (or while running other authenti-
cation mechanisms like fingerprint, face unlock [15], special
touch patterns [11], etc.) On the client-side, steps 3 to 5 are
performed after the password has been entered. However,
the computation time of these operations is negligible on a
high performance mobile device processor. The actual time a
user has to wait for the server to establish a secure channel is
therefore reduced to the key verification phase in steps 6 and
7. So in the use case of a password manager on the tamper
resistant hardware, the first data exchange starts when the
application is opened. While the user then enters the pass-
word, the more computationally intensive operations of the
key agreement phase can be executed simultaneously on the
server-side. After the user enters the password, the server
only requires the verifier M1 to verify the secure channel and
give access to the password manager.

The third adjustment is related to the computation of
verifiers M1 and M2. In the original protocol these verifiers
were computed as M1 = H(A,B, S) and M2 = H(A,M1, S).
However, the authors of the protocol suggest this approach as
only one possible way to mutually verify client and server. In
our approach we suggest another efficient way of computing
the verifiers. Instead of using the public keys A and B for
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computing M1 and M2, we use the scrambling parameter
u. This change optimizes the time of execution for the
verification steps on the Java Card side. For example, using
SHA-256 as a hash function and a modulus N of 2048 bit, the
verification of M1 will require computing SHA-256 over a 768
bytes input. This is reduced to 288 bytes by replacing (A,B)
with (u) and reduces the number of intermediate operations
required to compute M1 and M2.

4.3 Security Analysis
From a security point of view we argue that these changes

do not affect the security of the verification and the key agree-
ment. The first two adaptations change the sequence without
actually changing the communication and computations from
the original SRP-6a scheme.

For the third proposed adaptation (the change in the
verification) we argue that the security of the protocol is not
affected as other proven protocols use a similar approach of
double hashing. The most famous one is Hash-based Message
Authentication Code (HMAC), which also makes use of a
hash inside a hash function [2].

5. SECURE SESSION
In any symmetric key cryptographic system the first step is

an agreement on a secure session key between communicating
parties. This session key is used to establish a confidential
and authentic channel between the parties. The standard
approach in providing confidentiality and authenticity is to
use two different algorithms for each purpose with an au-
thenticated encryption scheme known as Encrypt-then-MAC.
Recently, different algorithms have been standardized to pro-
vide both functionalities at the same time. A well-known
example for this would be Galois/Counter Mode (GCM) from
ISO/IEC 19772:2009. However, such algorithms or operation
modes are not yet included in the Java Card standard.

For a secure session between the card and the off-card
application, the smart card standard provides a protocol
named Secure Messaging (SM) which is defined in ISO/IEC
7816-4. ISO/IEC 7816-4 is a standard for inter-industry
message exchange between smart cards and external inter-
faces that also defines the APDU message structure. APDU
messages are exchanged in command-response pairs which
have a header and an optional body part. The SM standard
defines a separate BER-TLV4 coded format for encoding
command and response APDUs for secure transmission. It
also states types of algorithms to be used for confidentiality
and authentication. The choice of specific algorithms and
parameters are implementation dependent.

As pointed out in the introduction section, the GP secure
channel is managed by a security domain of an applet. In
order to establish application-to-applet level secure messag-
ing, the protocol should be implemented on applet level.
We implement the ISO/IEC 7816-4 secure messaging based
on ETSI TS 102 176-2. This specification defines a set of
algorithms and protocols for constructing secure channels
between off-card applications and signature creating devices.
The secure messaging construction provided in this docu-
ment is ISO/IEC 7816-4 compliant. The changes we make
for our implementation are related to using newer versions
of algorithms than used in that specification.

4Standard for Tag-Length-Value encoded data structures

5.1 Confidentiality
According to ISO/IEC 7816-4 confidential command and

response APDUs are exchanged using specific BER-TLV data
objects protected by a suitable encryption algorithm. ETSI
TS 102 176-2 specifies two algorithms for confidentiality:
3DES and AES-128 bit in Cipher Block Chaining (CBC)
mode. For our implementation we use AES-256 in CBC
mode with a random initialization vector (IV), as this is
supported by the Java Card 2.2 crypto API and provides
stronger confidentiality. The random IV is generated on the
card and is shared with the off-card application during the
key agreement phase together with the user’s salt in step 2
of the protocol Scheme 2. Padding is performed according to
ISO/IEC 7816-4 with mandatory byte value 0x80 followed
by zeros to fill the block.

5.2 Message Authentication (MAC)
As in the previous case a BER-TLV data object is de-

fined for exchanging message authentication codes for both
command and response APDUs. The MAC data object for
a command APDU is constructed from header bytes, data
objects containing encrypted information and the expected
response length. The MAC data object for the response
APDU is constructed from data objects containing an en-
crypted response and the status word. In addition, both
request and response APDU MAC computations include a
counter variable which is incremented for every transmission.
This prevents replay attacks on both off-card application
and applet side. ETSI TS 102 176-2 specifies CBC-MAC
with 3DES and AES as algorithms for computing MACs.
In both cases it encrypts the last block, i.e. the output of
the normal CBC-MAC operation, with a different key to
protect against attacks on variable length messages [3]. In
our implementation we use AES-CMAC [33] because it fixes
security weaknesses of CBC-MAC [13].

5.3 Key Derivation
From the SRP key agreement, we obtain a 256 bit session

key K. Since the secure messaging standard provides confi-
dentiality and authentication, we need a different key for each
purpose. The derivation of encryption and authentication
keys from the shared secret is done in accordance with ANSI
X9.63 [1] using a cryptographic hash function and a counter.
If K is the session key from the key agreement, H the secure
hash function and c the counter variable; encryption and
authentication keys are derived with:

KEnc = H (K || c) where c = 1

KAuth = H (K || c) where c = 2

We use SHA-256 as the hash function. The newly derived
encryption and authentication key parameters serve only for
one secure messaging session.

6. IMPLEMENTATION

6.1 Implementation of SRP-6a for Key
Agreement

In recent years the SRP protocol has been adopted by
different standards (e.g. TLS-SRP [35]) and it has also been
implemented in many cryptographic libraries5. In contrast,

5http://en.wikipedia.org/wiki/Secure Remote Password
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there is no implementation of SRP for Java Cards (even in
the latest Java Card specifications). However, the Java Card
environment supports the execution of SRP within hardware
even though the explicit operations in the API are missing.
In our implementation we exploit the Java Card 2.2 crypto
APIto perform server-side SRP computation in a reasonable
amount of time. Our implementation supports SRP prime
modulus sizes of 1024, 1536 and 2048 bits. For the evaluation
of the protocol we also included 512 and 768 bit versions.
According to recommendations [14], in order to get 80 bit
security the modulus in RSA or Diffie–Hellman should be
at least 1248 bit long. Therefore we recommend using 1536
and 2048 bit implementations.

The important building blocks of the Java Card protocol
implementation are discussed in more detail in the following:

• Server-side static parameters (before step 1 of pro-
tocol Scheme 2): On the server-side, the password veri-
fier v, the multiplier parameter k and the product of the
two (kv) remain constant as long as the user password
is not changed. This is a performance advantage as
the static values can be computed once during applet
installation and stay the same until the user changes
the password.

• Server secret key generation (before step 1 in pro-
tocol Scheme 2): For our implementation we use a 256
bit random output from the smart cards secure random
number generator. According to RFC 5054 [35], the
ephemeral secret parameters a and b should be at least
256 bits long. The advantage of sticking to this mini-
mum recommended length is a better performance in
modular exponentiation operations involving the secret
parameters.

• Public parameter computation (step 1 in Scheme
2): The public key parameter is computed as B =
kv + gb. Since kv is already computed during applet
initialization, the remaining operations are one modular
addition and one modular exponentiation.

• Shared secret computation (step 4 in Scheme 2):
The shared secret is computed as S = (Avu)b. The
variable A is the public key of the client, u the random
scrambling parameter and b the ephemeral secret value.
This computation contains one modular multiplication
and two modular exponentiations. The main difficulty
in computing this operation on Java Card is that there
is currently no support for modulo operations over big
numbers. Since Java Card 2.2 a single class has been
added to support big numbers which, however, does
not support modular arithmetic operations. Moreover,
it is included under optional packages and is not imple-
mented by most Java Cards available on the market
today. These limitations forced us to look for other
options to perform operations on big numbers.

6.1.1 Big Numbers and Modular Arithmetic
Our implementation for modulo operations over big num-

bers is motivated by previous scientific work in [7, 34,36] –
especially, by BigNat6 (based on research by Tews et al. [36]),
a generic open source library for big numbers which supports

protocol#Real world implementations
6http://www.sos.cs.ru.nl/ovchip/

modulo operations. Because of memory limitations we only
implement specific big number operations tailored to our
purpose.

• Big numbers are handled with byte arrays: While it is
also possible to use arrays of short data types, using
byte arrays is more convenient and can be used by
native APIs with no need for conversion.

• Big number modular addition and subtraction can be
computed efficiently on a Java Card Virtual Machine
using basic subtraction and addition in base-256 en-
coded numbers. For example, with our implementation
a single modular addition and subtraction of 1024 bit
numbers on JCOP 2.4.1 smart cards take an average
of 27 or 54 ms, depending on the result being less or
greater than modulus n.

• Big number modular exponentiation: The suitable way
for big number modular multiplication as explained in
[34,36] is to leverage the Java Card RSA crypto API
which is accelerated by a cryptographic co-processor.
In [36] it is stated that a pure Java Card implementa-
tion for multiplication of 2048 bit long numbers takes
about 64 seconds. From such a performance we can
conclude that an implementation of SRP without hard-
ware acceleration is impractical. The usage of hardware
for big number modulo operations is made possible by
using RSA public key encryption [30] without padding.
The Java Card crypto API for RSA supports setting
the plain text parameter m and the public exponent
e of the RSA encryption c ≡ me (mod n). By simply
using our exponent as exponent of the RSA public key
(e) and a base padded with leading zeros as the plain
text (m), the cipher text we get from encryption with
the public key is the result of a modular exponentiation.
With the methods mentioned above the computation
for a 1024 bit public parameter B completes in less
than 150 ms on JCOP 2.4.1 smart cards.

• Finally, modular multiplication is simplified by using
square multiplication [34,36] which reduces the equation
to modular additions, subtractions and squaring.

x · y =
((x + y)2 − x2 − y2)

2

This operation requires 3 modular exponentiations
(which can be done with RSA public key encryption as
mentioned in the previous bullet point), 1 – 4 additions,
2 – 3 subtractions and one right shift for the division
by 2. The number of additions and subtractions varies
if single results are out of the modulus range. This
also influences the overall time (e.g. on JCOP 2.4.1 a
single 1024 bit multiplication takes between 130 and
230 ms). This method is used for the computation of
the shared secret S (step 4 in Scheme 2) and kv (during
installation time).

6.1.2 Implementation Notes
As of the latest Java Card specification (Java Card 3.0)

there is no support for transient RSA public keys. Tran-
sient RSA keys are included in JCOP-specific extension API.
However, in order to support as many devices as possible
we recommend to use standard Java Card facilities. The
drawback of using static RSA keys, which reside in persistent

MoMM '14 152

 
DOI 10.1145/2684103.2684128

Downloaded from 
www.mroland.at

http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Real_world_implementations
http://www.sos.cs.ru.nl/ovchip/


Table 2: SRP with 2048 bit modulo performance: compu-
tation times for card-side key agreement phase (agt.), key
verification phase (verif.) and complete (comp.) protocol
run-time (including data transfer time).

agt. verif. comp.

microSD SE

min [ms] 2744 341 3170

max [ms] 3318 377 3787

median [ms] 3036 356 3496

external

smart card

min [ms] 1204 89 1498

max [ms] 1477 98 1960

median [ms] 1293 90 1600

memory, is that read and write operations on EEPROM are
very slow compared to operations on transient memory.

One solution for this is to initialize two RSA public key
objects, one with fixed exponent 2 for squaring and another
one for 32 byte long ephemeral exponents u and b. Using
separate public key objects for squaring reduces the amount
of write operations to the EEPROM for each authentication
cycle. In total we currently need two EEPROM rewrites per
cycle.

6.2 Secure Messaging Implementation
In our secure messaging implementation, the operations

needed to wrap and unwrap APDUs have a small memory
overhead because of paddings and intermediate operations.
However, no extra memory is needed as the transient memory
allocated for the key agreement phase is large enough to be
reused for operations in secure messaging.

The encryption operation is straightforward as AES-CBC-
256 is supported in Java Card 2.2. For the MAC operation,
the algorithm AES-CMAC-128 is not included in the Java
Card standard 2.2. However, cipher-based MACs could be
implemented efficiently in the Java Card environment if their
underlying cipher algorithm can be executed with hardware
support. For AES-CMAC-128, the underlying block cipher
AES-CBC-128 is supported by the Java Card standard.

Additionally, the Java Card standard 2.2 supports AES-
CBC-MAC signatures. The internal operations of AES-
CMAC and AES-CBC-MAC are similar, except for the sub-
key derivation and XORing of the last input block employed
by CMAC. After this XOR operation of the last block with
the corresponding sub-key, the remaining operation of AES-
CMAC is the same as for AES-CBC-MAC [33].

7. PERFORMANCE EVALUATION

7.1 Secure Channel Protocol Establishment
In our SRP-6a based password-authenticated key agree-

ment protocol implementation, we use two rounds of message
exchange as stated in [38]. The first round is the key agree-
ment phase where the two parties generate the shared secret
S and the session key K. This includes operation steps 1-5
shown in Scheme 2. The second message exchange round
is the verification phase which is shown in steps 6 and 7.
In this section, we show the performance of the server-side
computations of these two phases using two Java Card vari-
ants and different modulus sizes. For the first test scenario
we used a DeviceFidelity microSD SE (credenSE 2.8J), a

Table 3: Card-side secure messaging performance (including
data transfer time).

Data size in bytes

16 32 64 128

microSD SE

min [ms] 322 375 463 655

max [ms] 360 415 534 738

median [ms] 337 384 494 687

external

smart card

min [ms] 88 90 95 105

max [ms] 97 103 107 143

median [ms] 90 92 97 107

Samsung Galaxy S3 with the SuperSmile ROM 7, and Open
Mobile API for accessing the secure element on the card. We
made the measurements using System.nanoT ime() before
sending and after receiving the APDU. For the second case
we used a JCOP 2.4.1 external smart card with contact-less
interface to give insight on performance differences between
different tamper resistant hardware variants. Measurements
were taken using NetBeans application profiler8 on the client-
side. Although our main focus is the performance evaluation
of the protocol in Java Card applets, we also include the
data transfer time between the client application and the
Java Cards. This should give a better insight on the actual
use cases of the protocol implementation. In both test cases
we took 100 measurements. The results of the evaluation are
split into four parts:

1. Key agreement performance: This evaluation show
the request-response time required from sending the
public parameter A in the client application until re-
ceiving the public parameter B and the user’s salt s
(steps 1 to 5 in Scheme 2). The length of the user salt
is 16 bytes, while the public key parameter has a length
equal to the prime modulus used in the test.

From the performance results in Table 2, we observe
that there is a considerable difference between the min-
imum and maximum time required to complete the
operations. This time difference is introduced by extra
modular additions and subtractions needed to get the
right modulus result when there is an overflow in other
modular additions and subtractions implemented in
software. From a cryptanalysis point of view this could
give an attacker some information about the ephemeral
secret key and verifier parameters used in the SRP pro-
tocol. Such issues can be solved by introducing dummy
addition and subtraction operations which compensate
the time difference. The time difference in the two
test scenarios (external smart card and microSD SE)
is caused by the differences in hardware implementa-
tion and communication channel. Due to the usage
of standard file system IO for exchanging data, the
microSD SE is much slower in transmitting data (cf.
time measurements in [22]).

2. Performance of verification: As it is shown in steps
6 and 7 of Scheme 2, the verification of the shared secret
consists of one message exchange of the verifiers M1

7http://usmile.at/downloads
8https://profiler.netbeans.org/
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(a) Performance on JCOP 2.4.1 microSD SE (b) Secure channel performance on JCOP 2.4.1 external smart card

Figure 2: Performance evaluation of different modulus sizes with standard deviation on both Java Card variants.

and M2. For our implementation we use a SHA-256
hash function, so that both M1 and M2 are 32 bytes.
However, since the shared secret S is also included
in the computation of M1 and M2, the performance
depends on the length of S which is equal to the size
of the prime modulus n.

In many use cases, the performance of the verification
stage is close to the actual time that a user has to
wait before the secure communication starts. This is
because the time intensive key agreement phase can
be started in the background while the user enters
the PIN/password. As shown in the results of the
evaluation in Table 2, the verification operation takes
a maximum time of 377 ms (microSD SE) and 98 ms
(external smart card).

3. Complete secure channel establishment: This
case includes the complete protocol running time re-
quired by the client- and server-side. For the client-side
computations we use the Bouncy Castle crypto API9.

4. Evaluation of prime modulus sizes: In Figure 2
we visualize the influence of different prime modulus
sizes to the required computation time. Our protocol
supports prime modulus sizes of 1024, 1536 and 2048
bit. For the purpose of performance evaluation we also
included 512 and 768 bit though we recommend to use
1536 and 2048 bit versions. Higher prime modulus sizes
of above 2048 bit are currently not supported due to
the limitation of RSA operations in the current Java
Card standard.

The results in Figure 2 show that the key agreement
time of the protocol is significantly influenced by the
prime modulus size. At the same time, the verification
phase of both Java Card variants is not varying much.
As already described, the big advantage of this is the
minimized time the user has to wait after entering
PIN/password.

9http://www.bouncycastle.org/

7.2 Secure Messaging Performance
In this section we analyse the performance of our secure

messaging implementation with both Java Card variants. To
perform these tests, the client-side wraps random data in a
secure request APDU object and sends this object. On the
Java Card side, a dummy applet receives the incoming secure
request APDU and unwraps it (performs MAC verification
and decryption) to get the random data from the client.
Then this random data is encoded inside a secure response
APDU object and is sent back to the client. Table 3 shows
the median, minimum and maximum results for different
packet sizes. The values for the external smart card vary
between 90 and 107 ms, with a data rate reaching 1.19 kB/s.
The microSD SE is slower with a median data rate of up to
186 B/s.

7.3 Memory Optimization
In addition to slight adaptations, discussed in section 6.2,

we optimize our implementation by considering performance,
memory and security trade-offs:

• Using the APDU buffer for performing and storing
intermediate operations and public values.

• Using static memory offsets for different sections in-
stead of allocating several smaller areas to save memory.

• Sharing (reuse) of transient memory between key agree-
ment and secure messaging implementation.

The current implementation with 2048 bit prime uses 1040
bytes for byte arrays in persistent (EEPROM) and 834 bytes
for byte arrays in transient (RAM) memory.

8. CONCLUSION
In this paper we propose an efficient way of implement-

ing a secure communication between Java Card applets and
off-card applications in a mutually authenticated secure chan-
nel based on the Secure Remote Password (SRP) protocol
and a standard authenticated encryption scheme. Although
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the Java Card environment is equipped with the necessary
hardware for computation of modulo operations in SRP, lim-
itations in Java Card APIs on accessing the cryptographic
co-processors make it challenging to implement SRP with
acceptable performance. However, by exploiting the RSA
encryption API provided by the platform, we show that it
is possible to compute exponentiations and multiplications
with support of the cryptographic co-processor. This, and
minor adaptations to the protocol, made it possible to im-
plement the SRP-6a server-side in a Java Card applet with
reasonable computation time. For our implementation with
a 2048 bit long prime modulus, the complete protocol runs
in less than 2 seconds for the smart card and less than 4
seconds for the secure element tests. However, considering
our use cases, a user only has to wait for the verification
phase (i.e. less than 100 ms for the smart card and 400 ms for
the secure element) since the time intensive key agreement
phase runs simultaneously with the password/PIN entry. Fi-
nally, we also provide an applet level implementation for
the ISO/IEC 7816-4 secure messaging standard. The source
code of the whole implementation is available under an open
source license10.
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A. Ben-Oved, and S. Möller. On the Need for Different
Security Methods on Mobile Phones, page 465–473.
MobileHCI ’11. ACM, 2011.

[7] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup.
Anonymous credentials on a standard Java Card, page
600–610. CCS ’09. ACM, 2009.

10https://gitorious.org/secure-element/
secure-channel-srp6a-android-lib and https://gitorious.org/
secure-element/secure-channel-srp6a-applet

[8] S. A. Brands. Rethinking Public Key Infrastructures
and Digital Certificates: Building in Privacy. MIT
Press, 2000.

[9] E. Brickell, J. Camenisch, and L. Chen. Direct
anonymous attestation, page 132–145. CCS ’04. ACM,
2004.

[10] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys
’11, page 239–252. ACM, 2011.

[11] A. De Luca, A. Hang, F. Brudy, C. Lindner, and
H. Hussmann. Touch me once and i know it’s you!:
implicit authentication based on touch screen patterns.
In Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems, CHI ’12, page
987–996, New York, NY, USA, 2012. ACM.

[12] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[13] M. J. Dworkin. SP 800-38B. Recommendation for block
cipher modes of operation: The CMAC mode for
authentication. Technical report, National Institute of
Standards & Technology, Gaithersburg, MD, United
States, 2005.

[14] European Network of Excellence in Cryptology II.
ECRYPT II yearly report on algorithms and keysizes.
June 2011.

[15] R. D. Findling and R. Mayrhofer. Towards face unlock:
On the difficulty of reliably detecting faces on mobile
phones. In Proc. MoMM 2012: 10th International
Conference on Advances in Mobile Computing and
Multimedia, pages 275–280, New York, USA, 2012.
ACM.

[16] V. Gayoso Martinez, C. Sanchez Avila,
J. Espinosa Garcia, and L. Hernandez Encinas. Elliptic
curve cryptography: Java implementation issues, pages
238–241. Oct 2005.

[17] GlobalPlatform. Secure channel protocol –
GlobalPlatform card specification v2.2 - Amendment D,
2009.

[18] J.-H. Han, Y.-J. Kim, S.-I. Jun, K.-I. Chung, and C.-H.
Seo. Implementation of ECC/ECDSA cryptography
algorithms based on Java card, pages 272–276. 2002.

[19] G. Hancke. A practical relay attack on ISO 14443
proximity cards. Technical report, 2005.

[20] F. Hao and P. Y. A. Ryan. Password authenticated key
exchange by juggling. In Proceedings of the 16th
International conference on Security protocols,
Security’08, page 159–171, Berlin, Heidelberg, 2011.
Springer-Verlag.
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