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Abstract 

Android’s fast-lived development cycles and increasing amounts of manufacturers and device models 

make a comparison of relevant security attributes, in addition to the already difficult comparison of 

features, more challenging. Most smartphone reviews only consider offered features in their analysis. 

Smartphone manufacturers include their own software on top of the Android Open Source Project 

(AOSP) to improve user experience, to add their own pre-installed apps or apps from third-party 

sponsors, and to distinguish themselves from their competitors. These changes affect the security of 

smartphones. It is insufficient to validate device security state only based on measured data from real 

devices for a complete assessment. Promised major version releases, security updates, security 

update schedules of devices, and correct claims on security and privacy of pre-installed software are 

some aspects, which need statistically significant amounts of data to evaluate. Lack of software and 

security updates is a common reason for shorter lifespans of electronics, especially for smartphones. 

Validating the claims of manufacturers and publishing the results creates incentives towards more 

sustainable maintenance and longevity of smartphones. We present a novel scalable data collection 

and evaluation framework, which includes multiple sources of data like dedicated device farms, 

crowdsourcing, and webscraping. Our solution improves the comparability of devices based on their 

security attributes by providing measurements from real devices. 

1. Introduction 

Android is a rapidly developing open-source mobile operating system. Due to Android’s fast-paced 

development cycles, the heterogeneity of device manufacturers, and the large number of devices with 

vendor-specific software modifications, it is challenging to evaluate and compare devices with 

regard to security and functionality. AOSP follows strict release cycles with one major version 

update per year and monthly security updates including updates for the Android platform, the 
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upstream Linux kernel and fixes from system-on-chip (SOC) manufacturers. These security updates 

are defined in security patch levels and can be found in the Android Security Bulletins. Smartphone 

manufacturers include their own software on top of AOSP to improve user experience, to add their 

own pre-installed apps or apps from third-party sponsors, and to distinguish themselves from their 

competitors. Consequently, smartphone manufacturers need to adapt these additions and 

customizations of the AOSP codebase before releasing (security) updates to end user devices. 

Therefore, a fully automated rollout process from AOSP to the end user is not yet possible. However, 

Google has started to address this issue. Starting with Android 8, Project Treble (Malchev, 2017) 

aims to separate device-specific vendor implementations from the Android OS framework, which 

allows for faster Android releases without modification of hardware-specific parts of Android. 

Project Mainline (Siddiqui, 2020) adds modular system components and introduces the Android 

Pony EXpress (APEX) file format for system component packaging in Android 10. Since then, more 

and more system components are modularized in later Android versions. Modular system 

components are a major improvement on the update process, as Google is able to remove 

dependencies on manufacturers by providing updates of system modules over existing infrastructure 

like Google Play Store. These developments and increasing commitment to continuous maintenance 

by smartphone manufacturers for up to 5 years of security updates (Atanassov, 2021; Google, 2023; 

Samsung Mobile Security, 2022) improve the lifespan of Android devices, as lack of security 

updates often leads to restricted use in applications with high security requirements. Given such 

commitments, it is vital to verify if manufacturers keep their promises and if there are discrepancies 

in the quality of the maintained software across different manufacturers. 

In addition to the functional aspects of a device, more-recent Android versions offer improved 

security and privacy features, which users may want to consider for their purchase decisions. The 

ever-growing number of Android devices and device manufacturers increase the number of options 

for consumers ranging from low-budget to high-end flagship devices. Psychology suggests that 

choice overload decreases the ability of consumers to properly compare and evaluate their options 

due to decreasing commitment and oversight (Schwartz, 2003). Web services like GSMArena 

provide the possibility to search for and compare multiple devices from different manufacturers. 

Most of these websites scrape manufacturer websites for devices and update their internal database. 

Users are often not able to validate the information from such third-party websites. 

This paper presents a scalable data collection and evaluation framework, which includes multiple 

sources of data like dedicated device farms, crowdsourcing and webscraping, and stores the 

collected data for analysis and presentation to end users. In addition, data is recorded in a raw file 

archive to maintain transparency and permit iterative re-processing upon improvements of analysis 

algorithms. The aggregated database should serve experts as well as average smartphone users, by 

providing detailed data measured from real devices (to verify manufacturer claims) and a simple 

total security score for fast comparison (to assist future buying decisions). An initial prototypical 

frontend for advanced users is available at https://www.android-device-security.org/. 

2. Related Work 

The Android ecosystem contains a complex, evolving architecture including different security 

mechanisms. Mayrhofer et al. (2021) describe mechanisms and concepts in AOSP and their 

development history up to Android version 11. Based on their research, there are many privacy and 

security related threats like the risk of pre-installed applications with pre-granted permissions. 

Lau et al. (2020) propose the Uraniborg risk computation framework as an approach to calculate the 

security risk of an Android device. Their formula is based on the number of apps with signature 
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permissions, pre-granted permissions, cleartext communication of apps, and a custom risk score for 

specific permissions defined by the authors. 

Ozbay and Bicakci (2023) propose a total device security score based on metrics of pre-installed 

applications. Each metric has its own security score calculated by multiplying the number of 

affected pre-installed applications, the difficulty to exploit, and the impact of exploitation. The 

result is a score based on the normalized sum of all individual metric scores. 

Other work focuses on static code analysis of firmware images from different vendors to evaluate 

the security of Android devices based on pre-installed software, security patch rollout time, 

verification of security update promises, and the number of vulnerable apps with open CVEs 

(Elsabagh et al., 2020; Gamba et al., 2020; Hou et al., 2022). 

Pöll and Roland (2022) investigated on the reproducibility of AOSP and proposed a framework to 

analyze the state of reproducibility of AOSP and AOSP-code used in device firmware images. The 

authors introduced accountable builds as a form of reproducibility permitting explainable 

differences. They found that pure AOSP is already close to full reproducibility and that Project 

Treble (Malchev, 2017) helped to get the core operating system (system.img) closer to AOSP in 

actual device firmware by eliminating hardware and manufacturer-specific components. 

Wagner et al. (2014) conducted a large-scale crowdsourced data collection of low-level data in 33 

different event categories from 12,500 Android users worldwide within a timespan of nearly two 

years. As a result, Thomas et al. (2015) proposed the Free-Update-Mean (FUM) security metric to 

rank the performance of device manufacturers and network operators, based on their provision of 

updates and exposure to critical vulnerabilities. Their conclusion was that the main bottleneck in the 

latency of the security update processes lies within the manufacturers. 

Khokhlov and Reznik (2017) proposed the Overall Security Evaluation Score (OSES) to evaluate 

device security and to check the validity of sensor data. The metric assumes that the more 

permissions a user has, the higher the risk of sensor data manipulation. 

Many manufacturers publish relevant security update promises, security bulletins, and other 

information about devices on their websites; often lacking a machine-readable format. Due to the 

vast quantity of existing device models, it is challenging to collect significant amounts of first-hand 

information about Android devices. Aside of crowdsourcing, manual or automated webscraping is 

usually the only way to obtain such information. Third-party websites also offer collections of 

information about Android devices, but this information is usually not obtained from actual devices, 

but through other, potentially wrong or outdated sources. Therefore, the information must be 

validated before usage in security evaluations. Jones et al. (2020) put effort into the investigation of 

rollout processes of Android security updates and OS upgrades. They used a pseudonymized dataset 

based on HTTP access logs from a social network app containing request date, hashed user account 

identifier, user-agent string (including OS and build version, phone model, etc.), country code 

(derived from IP address), combined with data scraped from Android security bulletins, carrier and 

manufacturer security update announcements, and device release dates from GSMArena and 

PhoneArena. Particularly the analysis of metadata from Android security bulletins and CVEs is 

interesting for this work, because it shows what security updates need to be implemented by 

manufacturers to fulfill their security update promises (Farhang et al., 2020; Wu et al., 2019). 

Previous work provides a solid basis for the evaluation of Android devices from different 

manufacturers. However, most approaches do not offer an actionable way to evaluate the security of 

specific devices. Consequently, the results are short-lived and often incomplete. Our approach 

creates and provides access to a database of security-relevant attributes for specific devices. 
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3. Collecting Security State of Android Devices 

In order to collect and aggregate data about update distribution, supported security and privacy 

features, device state in general, and promised device features, we create a data collection and 

processing framework that collects data from controlled lab devices (in the form of device farms), 

in-field devices (through future crowdsourcing) and from webscraping. A scalable data ingestion 

pipeline accepts data from all the different sources, stores it for long-term archival and for 

subsequent post-processing. A modular post-processing pipeline analyzes the data and derives 

attributes about device security and privacy features to be stored in a database for presentation 

through a web-based user interface. 

3.1. Data Ingestion and Processing 

 

Figure 1. Data Ingestion and Processing Pipeline 

The data ingestion and processing pipeline consists of modular server components that receive data 

from controlled lab devices in device farms, from crowdsourcing, and webscrapers. All components 

are designed in a modular and scalable manner with the aim of high-throughput processing. To 

achieve this goal, a load balancer receives distributes incoming requests to one or more submission 

servers. The submission servers implement a simple REST API, which receives the submissions as 

JSON objects and writes them into a message queue (MQ). The MQ reduces the risk of dropping 

incoming requests due to servers being overloaded with processing data. 

Depending on its source, the data is labeled with different trust levels distinguishing between 

trusted data from controlled lab devices, controlled webscrapers and (potentially manipulated) 

crowdsourced data. An HMAC (hash-based message authentication code) based authentication with 

shared secrets is used to identify data submitted by trusted sources. 

Workers are responsible for the offline processing of data from the MQ. From experience, we have 

learned that errors may occur in data or the processing implementation that result in inaccurate post-

processed data. Manual fixes are time-intensive and the change history is often incomplete and 

opaque. To tackle this problem, we implemented a file-based archive, which stores all raw data and 

permits later rebuilding of the post-processed data by feeding the collected raw data into the MQ 

again. When a new iteration of the database needs to be built, the down time of the frontend can be 

minimized by reprocessing the raw data into a fresh database, which replaces the old one once the 

build process is finished. Unique file names based on content hashes allow for an efficient 
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synchronization to backups and between multiple instances of the archive. Figure 1 shows the full 

pipeline. 

3.2. Data Storage 

All collected raw JSON data is stored in a file archive. A special folder structure derived from the 

hexadecimal representation of a SHA-256 hash function allows for efficient searching through the 

archive. Half of the hexadecimal characters are grouped in pairs, each representing one level in the 

folder hierarchy. This strategy permits faster searches of specific messages. The filename consists 

of the archival timestamp, a message-specific index token for file-lookup, and the hexadecimal 

representation of the authentication HMAC (if one exists). 

Each attribute derived from raw data through post-processing is stored as a separate measurement in 

the database without linking back to the ingested raw dataset. This reduces the risk of device 

fingerprinting and privacy-relevant data leaks from the processed data through unique attribute 

combinations. Measurements only include a reference to the device model and its specific firmware 

version, a validity score, the origin (if from a trusted source), and the measured value. They are 

grouped into multiple categories. The definition of these categories and the determination of the 

validity score, which represents the trustworthiness of the measured value based on the source of 

the data, are subject to future evaluation. By using measurements from actual devices and by 

comparing those with update expectations (from scraped data), we are able to check how 

trustworthy manufacturers are with their update promises. 

3.3. Android Device Farm 

Using controlled lab devices in organized in device farms for measuring state of untainted devices 

is an effective way to ensure integrity of collected data. It also allows running tests that cannot 

easily be run on in-field devices via crowdsourcing, e.g. due to relying on access through Android 

Debug Bridge (ADB) or due to being intensive in terms of screen time, storage, etc. 

We have built a device farm consisting of about 30 Android devices with Android versions ranging 

from 7 to 13. All devices are connected via a set of USB hubs to a Mini PC (Zotac ZBOX CI547 

Nano) running Debian/Linux, which gives access to all devices through ADB. Due to their 

heterogeneity, Android devices have subtle differences in interaction methods and commands 

required to fulfill a task. Additionally, ADB on its own not efficient for the management of a whole 

device farm. To overcome these challenges, we implemented a Device Farm Manager with a web 

interface to monitor the state of devices and to create scheduled tasks for running our attribute 

collection. 

The farm manager allows connecting to and managing multiple distributed device farms 

simultaneously. In future, the infrastructure will consist of multiple device farms operated by 

trusted institutions and organizations that contribute measurements to the submission pipeline. 

As a first take-away from operating a device farm for several years is that battery management is 

troublesome. Keeping devices continuously attached to an external USB power supply, resulted in 

damaged (bloated) batteries for several devices. As a solution, we decided to keep the devices 

attached to USB (and thus charging) for only one hour per day. We achieve this by switching the 

power supply of the USB hubs. However, this creates a range of new problems including loss of 

ADB connectivity (due to unusual default USB configuration after restarting the USB hubs). Also, 

the battery management of some devices could not handle this alternative charging mode resulting 

in yet more damaged batteries. Eventually, we replaced batteries on affected phones with 
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supercapacitors by removing the battery, extracting the protection circuit from the battery pack and 

replacing the Lithium cells with 5-farad capacitors with a dielectric strength of more than 5 volts. 

3.4. Attribute Scanner App 

We created an app to collect measurements from Android devices. The app can be run on lab 

devices as well as on devices of volunteers (crowdsourcing). It consists of a lightweight frontend 

and a modular scanner library. In future, the library may be included in third-party apps to boost 

crowdsourcing. A plug-in system simplifies the addition of new scanner modules and allows scans 

with pre-defined subsets of scanner modules using the App settings or ADB arguments. When run 

via ADB, the app also accepts the HMAC secret for authenticated submission of results. 

In the device farm, the farm manager schedules different types of scans at different intervals (e.g. 

daily, weekly, or monthly), based on the likelihood that scanned data may change (e.g. due to system 

updates), expected collection effort (processing time to get results) and addition of new scanner 

modules. The scheduled process interacts with devices over ADB and consists of unlocking the 

device, installing the latest version of the scanner app, and starting it with scan-specific parameters. 

After scan completion, the app directly submits the collected data into the ingestion pipeline. 

3.5. Crowdsourcing 

Despite the advantages of device farms, it is infeasible to achieve full device coverage due to cost 

and management effort. In addition, staged update rollout processes, regional differences, mobile 

network operator customizations, etc. may influence measurements. Crowdsourced measurements 

can cover a broader spectrum of smartphone models across different regions, including less popular 

or older models that are not part of the device farms. Thus, crowdsourcing helps to fill that gap and 

to increase the scope of the evaluations. 

In an initial attempt towards future crowdsourcing, we designed the scanner app with a GUI that 

permits volunteers to participate in crowdsourcing by collecting and submitting measurements from 

their devices. The scanners permitted in the crowdsourcing case are designed to minimize required 

permissions and to avoid collection of potentially personally identifying or otherwise privacy-

sensitive data. Nevertheless, unlike with ADB-based automation, the app informs the user about the 

contents of collected data and explicitly requests user-consent before submitting any data. 

To evaluate our prototype implementation of the crowdsourcing process, we have conducted a pilot 

measurement campaign with 67 volunteers, covering 52 distinct smartphone models from 12 

vendors. These devices were manufactured between 2013 and 2020, and ran Android versions 6 to 

11. Most devices were manufactured by Samsung, Huawei, and Google, but we also tested our 

implementation on smartphones from Sony, OnePlus, and Xiaomi, and even on less common 

Android smartphones such as the Blackview BV5500 Pro, the Fairphone 3, or the Realme X50 5G. 

The downside of crowdsourcing is that measurements are not possible on-demand and instead 

depend on volunteers’ ad-hoc participation and consent. Crowdsourcing is best suited for 

lightweight measurements rather than long-running scans, in order to encourage volunteers to 

participate in the collection process. Moreover, in order to attract volunteers, the app will need to 

offer some incentive. E.g., the app might present a total security score for comparison with other 

devices or recommendations for device-specific security and privacy improvements. 
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3.6. Webscraping 

Not all data that we aim to collect about Android devices is measurable directly on-device. For 

instance, some manufacturers distribute data on update promises through their websites; some data 

about version-specific Android features is available in the AOSP documentation; device 

certifications (if available) are published by independent labs; additional data about devices is 

available through third-party device information websites. Webscraping is an obvious choice to 

acquire such information and to enhance the database with information not (yet) collected and 

verified through measurements from actual devices. The trustworthiness of data is determined based 

on its origin. Generally, we consider first-party websites more trustworthy. 

We developed a Python-based webscraping framework to collect data about the Android platform 

(Android versions, builds of Google devices, manifest permissions, permission groups), smartphone 

certifications (Common Criteria, Samsung Knox), security update promises and update schedules 

from first-hand source (Google, Samsung, Oppo, Huawei, Nokia, Xiaomi, Motorola, Vivo), and 

basic device information from third-party websites (GSMArena, PhoneDB, AndroidEnterpriseSolu-

tionsDirectory). We use BeautifulSoup to render websites and and Selenium to automate crawling. 

Scraped data is normalized into a JSON structure and fed into the ingestion pipeline. To assess the 

requirements for maintenance of the webscraper components due to structural page-changes, we 

tested our solution against the history of a website based on data from the Wayback Machine. 

3.7. Frontend 

One of the main outcomes of the project is a browsable frontend to our database. It can be accessed 

at https://www.android-device-security.org/ and allows users to query information inferred about 

device models. Data can be filtered based on a set of basic and advanced filters. Basic filters include 

manufacturers, device names, device model names, and searched attributes. Advanced filters allow 

for filtering based on selected attributes and ranges of release dates, Android API levels, and 

security patch levels. The current design allows users to research attributes of one or multiple 

smartphones. Future work will include additional selection fields and a configurable scoring 

algorithm, where users can define their own score by defining feature/attribute sets and their impact 

to compare devices. Future work may also add different presentations of the data to target different 

experience levels of users or specific comparison use-cases, eventually aiming for a broad target 

audience ranging from researchers and experienced users evaluating the capabilities of devices to 

end users making buying decisions. 

4. Conclusion 

This research focuses on the very important aspect of security on Android devices. We present a 

scalable architecture for data mining, evaluation, and presentation purposes. The main aim of this 

architecture is to create a basis for future research, by collecting large amounts of data on the 

security and privacy capabilities and features of Android devices. The results of this research may 

impact future purchase decisions of end users and businesses, and tech-reviewers might use the raw 

data to include a security comparison, in addition to the feature reviews. 

In future work we aim to extend the frontend by including more attributes of devices and grouping 

them into intuitive clusters. Also, there may be different presentation forms based on the knowledge 

of the users. Further, we aim for a customizable security evaluation score, where the user is able to 

select and weight specific attributes or clusters in the calculation of the security score. New types of 
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scanners will check if manufacturers provide correct implementations of security-relevant code like 

for example EncryptedSharedPreferences. 
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