
Mobile App Distribution Transparency (MADT):
Design and evaluation of a system to mitigate
necessary trust in mobile app distribution

systems⋆

Mario Lins1, René Mayrhofer1, Michael Roland1, and Alastair R. Beresford2

1 Johannes Kepler University Linz, Linz, Austria
{lins,rm,roland}@ins.jku.at

2 Dept of Computer Science and Technology, University of Cambridge, Cambridge,
UK

arb33@cam.ac.uk

Abstract. Current mobile app distribution systems use (asymmetric)
digital signatures to ensure integrity and authenticity for their apps.
However, there are realistic threat models under which trust in such sig-
natures is compromised. One example is an unconsciously leaked signing
key that allows an attacker to distribute malicious updates to an exist-
ing app; other examples are intentional key sharing as well as insider
attacks. Recent app store policy changes like Google Play Signing (and
other similar OEM and free app stores like F-Droid) are a practically
relevant case of intentional key sharing: such distribution systems take
over key handling and create app signatures themselves, breaking up the
previous end-to-end veri�able trust from developer to end-user device.
This paper addresses these threats by proposing a system design that
incorporates transparency logs and end-to-end veri�cation in mobile app
distribution systems to make unauthorized distribution attempts trans-
parent and thus detectable. We analyzed the relevant security consider-
ations with regard to our threat model as well as the security implica-
tions in the case where an attacker is able to compromise our proposed
system. Finally, we implemented an open-source prototype extending F-
Droid, which demonstrates practicability, feasibility, and performance of
our proposed system.

Keywords: Mobile app distribution · Transparency logs · Supply-chain
security · Veri�able trust · Digital signatures

⋆ © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
L. Fritsch et al. (Eds.): NordSec 2023, LNCS 14324, pp. 1�19, 2024.
https://doi.org/10.1007/978-3-031-47748-5_11

This version of the contribution has been accepted for publication, after peer
review, but is not the Version of Record, and does not re�ect post-accep-
tance improvements or corrections. The Version of Record is available online at
https://doi.org/10.1007/978-3-031-47748-5_11). Use of this Accepted Version is
subject to the publisher's Accepted Manuscript terms of use.

https://doi.org/10.1007/978-3-031-47748-5_11
https://doi.org/10.1007/978-3-031-47748-5_11
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 M. Lins et al.

1 Introduction

Supply-chain attacks are popular, omnipresent, and e�ective as evidenced by re-
cent reports about signi�cant attacks and events such as NotPetya, XcodeGhost,
or the SolarWind attack [5,13]. Due to their potential severity and automatic
distribution to thousands or even millions of trusting users [5], state actors such
as China or Russia are actively invested in exploiting software supply chains [13].

According to the MITRE ATT&CK® knowledge base [27], supply chains can
be compromised in several ways, like manipulating the software update/distribu-
tion mechanisms, replacing legitimate software with modi�ed versions, or selling
modi�ed/counterfeit products to legitimate distributors. These examples often
involve compromising existing trust anchors like signing keys or certi�cates [13].

We focused our research on supply chain security of mobile app distribution
systems which rely on certain trust anchors, like digital signatures. As these
signatures are an integral component in well-known mobile app distributions
systems such as Google Play or F-Droid, there is often no alternative but to trust
them completely. Although, digital signatures are used to ensure the integrity
and authenticity of apps, we have identi�ed certain threats in current mobile app
distribution systems that could lead to signi�cant security concerns for a user or
the developer of the respective app. These include leaked signing keys that may
be used by unauthorized entities, malicious distributors, insider attacks or even
attempts to distribute di�erent app versions to speci�c users.

This paper introduces a novel concept, built on transparency logs, to improve
veri�ability and discoverability of potential attacks related to digital signatures,
with a particular focus on mobile app distribution systems. We concentrate on
the digital app signature since it is a key part of ecosystem security.

2 Preliminaries

2.1 App Signing Process

Google Play Store provides an integrated feature, called Play App Signing [12],
that manages and protects the private key used for signing the APK �le3. This
approach requires that the private key is managed by Google's Key Management
Service and thus it needs to be stored on Google's infrastructure. For Android
apps published before August 2021, the Play App Signing approach is optional
and developers can still manage app signing keys themselves. However, for newly
published apps, the Play App Signing approach is mandatory. This particular
policy adaption by Google results in a centralized trust anchor that has to be
trusted by both the user and the developer (more details in section 3.2).

F-Droid [9] is an alternative distribution system for free and open source
Android apps. If a developer wants to sign an APK �le, F-Droid provides two

3 As developer identities are not directly veri�ed by most Android app distribution
systems, authenticity of signing keys is typically only guaranteed in the Trust-on-
First-Use (TOFU) model.

Mobile App Distribution Transparency 3

possible procedures for that. One approach is to publish two APK versions where
one is signed by the developer and the other one is signed by the F-Droid repos-
itory (with a key held by F-Droid, comparable to Google Play Signing in this
case). This is especially useful for distributing updates for apps that have been
installed via di�erent distribution channels (e.g. Play Store) and for apps avail-
able through F-Droid. This approach requires including the signature of the
developer into the corresponding metadata description of the particular app and
that the app is still reproducible by F-Droid. The other approach requires the
developer to provide a reference to the signed APK �le. If F-Droid is able to
reproduce the APK �le in a way that it matches the referenced one, F-Droid
publishes the signed APK of the developer directly without signing it again with
the F-Droid repository key.

2.2 Veri�able Logs

A veri�able log [8,15,16] is a data structure that is based on an append-only
ledger that is cryptographically secure. The Merkle tree is a popular example
where it is not possible to retroactively insert, delete, or modify any record.
One of the main advantages of this data structure is that these properties are
auditable, either publicly or at least by its consumers (e.g. when hosted in an
internal network). The data stored in a veri�able log is application-speci�c and
is not de�ned by the log itself. A veri�able log is stored on one or preferably
multiple servers that are accessible by clients, which may not necessarily be
trusted. Clients do not have to trust the log server as the data structure allows
veri�cation of the proper behavior of the log itself.

Merkle Trees We base our design on a veri�able log using a binary Merkle
tree [20] to allow e�cient auditing and to provide tamper protection due to its
append-only property. The Merkle tree consists of leafs and nodes, with the top
node called root node. The leaves represent data that are managed by the tree.
Values are attached to internal nodes and are calculated as a cryptographic hash
function (e.g. SHA-256) of their children, recursively, until a value of the root
node is reached. Trees do not need to be balanced and therefore can store an
arbitrary amount of data.

Inclusion Proofs An inclusion proof allows one party to prove to another that
a particular leaf exists in a Merkle tree. This proof can be constructed e�ciently,
as it only requires the so-called Merkle Audit Path [11,15,16] which represents
the shortest path from the respective leaf to the root node hash of the tree. The
remaining leaves and nodes are not needed for this calculation. This approach
means that the calculated root node hash is compared to the expected root node
hash. If these hashes are equal, we have proven the particular leaf is part of the
tree4. The left tree in Fig. 1 highlights the path that is required for such an
4 We consider a particular tree to be fully represented by its root hash, which can
in turn be contained within an updated or larger tree with a di�erent root hash.

4 M. Lins et al.

inclusion proof for Record 2. The required components for the calculation are
marked in red. Below is a step-by-step description of validating an inclusion
proof for the example given in Fig. 1.

Given an ordered list of node hashes A and C, the inclusion proof can be
veri�ed as followed:

1. Calculate the leaf hash of Record 2 : B = SHA-256(0x00 || Record 2), where
0x00 is used as a pre�x for leaf hashes and 0x01 for nodes to provide second
preimage resistance [16].

2. Calculate the node hash E = SHA-256(0x01 || A || B).
3. Calculate the root node hash root = SHA-256(0x01 || E || C).
4. Compare the calculated root hash with the claimed root node hash.
5. The inclusion proof is valid if the hashes are equal.

Consistency Proofs A consistency proof [16] can be used to verify if the
append-only property of the Merkle tree is valid. The append-only property
ensures that it is not possible to insert, modify, or delete a leaf or node in
the tree retroactively. Therefore, the consistency proof validates if a previously
generated version of the tree is part of the current tree that may have been
extended by new entries.

Assuming two Merkle trees, Tree_Old and Tree_New as shown in Fig. 1,
where Tree_Old is a previous version of Tree_New, a consistency proof provides
an ordered list of node hashes in order to perform a veri�cation whether the
entries of Tree_Old is still equal to the corresponding entries in Tree_New or
not. Given the root node hash of Tree_Old, a root node hash of Tree_New, and
the corresponding consistency proof [E,C,D,I], the veri�cation of that proof can
be calculated as followed:

1. Calculate the resulting node hash: X = SHA-256(0x01 || E || C).
2. Verify that X is equal to root hash of Tree_Old.
3. Calculate F = SHA-256(0x01 || C || D).
4. Calculate J = SHA-256(0x01 || E || F).
5. Calculate root node hash of Tree_New: Y = SHA-256(0x01 || J || I).
6. Compare the calculated root node hash Y with the claimed root node hash.
7. The consistency proof is valid if the hashes are equal.

2.3 Split-View Attack

A relevant attack on such veri�able logs that also applies to the design proposal
of this paper is called split-view attack [18,24]. A log subject to such an attack
would be able to present di�erent log representations to its clients while still
maintaining the append-only property given by the Merkle tree. This means
that all operations performed by a client on a speci�c log (e.g. inclusion and

Within the scope of inclusion proofs we thus use the terms `tree' and `root hash'
interchangeably wrt. the provided security guarantee.

Mobile App Distribution Transparency 5

Record 1 Record 2 Record 3 Record 4

E F

A B C D

Record 1 Record 2

root(Tree_Old)

A B

root(Tree_New)

Record 5 Record 6

G H

IJ

Record 3

CE

Fig. 1: Merkle Tree proofs

consistency proofs) seem valid, yet receiving di�erent data than seen by other
clients. However, once a log carries out a split-view attack, it must consistently
maintain di�erent views for each subgroup of clients since doing otherwise is
detectable. A security evaluation and suggestions to counter this kind of attack
are given in section 5.1.

2.4 Personality

The term personality is used by Google Trillian [6] and describes the application-
speci�c interface to access a log server. The main responsibilities of a personality
are de�ning and validating the application-speci�c data model, optionally pro-
viding access control and in case the personality and the log is maintained by
di�erent parties, providing auditable information for external veri�ers.

2.5 Monitor, Auditor and Witness

One of the main advantages of a veri�able log is that it enables interested parties
to detect misconduct up to even malicious behavior regarding certain log entries.
It is possible to set up monitors, auditors or witnesses that periodically verify
the behavior of the log or notify subscribers in case of suspicious behavior. A
monitor may store previous copies of the veri�able log in order to verify the
consistency between a new and previous versions. An auditor typically veri�es
the consistency of only a subset of the log by performing inclusion proofs. A
witness [18,26] on the other hand is an independent entity that observes one
or more log systems to prevent split-view attacks. Log auditors can thus have
more con�dence that a log system is truly and globally consistent if multiple
independent witnesses have a consensus about the speci�c state (checkpoint) of
the log. The witness cosigns a checkpoint after verifying that an evolution of a
previously signed checkpoint is consistent with it. In case the log or the witness
are new, the witness uses the trust-on-�rst-use approach.

6 M. Lins et al.

3 Threat Model

The focus of our threat model is to identify potential security impacts with regard
to the authenticity and integrity of APK �les that are distributed by a mobile
app distributor (e.g. Google Play, F-Droid). The most important security control
that is used to ensure authenticity and integrity are digital signatures. Therefore,
most of our threats5 address scenarios where the signature is compromised or
even used by malicious actors. As there are di�erent parties involved in mobile
app distribution systems, we �rst de�ne potential stakeholders.

3.1 Stakeholders

Developer: The developer wants to distribute an app via a mobile app distribu-
tion system. From the developer's perspective, it is important that unauthorized
entities cannot manipulate the app or even publish app updates on their behalf.
User: The user primarily wants to use the app and may want to verify the
authenticity and integrity of the app to be sure that it has not been manipulated.
Distributor: The distributor wants to distribute apps to its users using secure
infrastructure. Furthermore, the distributor wants to provide its users with se-
curity by incorporating controls such as digital signatures to prevent repository
spoo�ng or malicious app updates6.

A stakeholder may also take over more than one role, like a developer who is
also hosting a distribution system.

3.2 Threats

Threat 1: Signing key is leaked and used by an unauthorized party.

The most relevant threat that is addressed by the proposed system is that an
unauthorized party uses the app signing key to distribute malicious updates. If
the holder of the signing key is not aware that the key has leaked, they may not
recognize that it is used by an unauthorized party. This is also relevant even in
case that the holder of the signing key monitors certain distribution channels,
directly as these could also be untrustworthy or even malicious.
Threat 2: Unauthorized usage of the signing key due to compulsory

outsourcing. As mentioned in section 2.1, the current Google Play policies en-
force the developer to store the signing key on Google's infrastructure so that
the developer is not in control of the signing key anymore and comparable app
distributors have similar policies. This restriction requires full trust in this ex-
ternal storage and that no unauthorized entity can access the security relevant
signing key(s). In that particular case, the developer or the user cannot verify if
the signing key has been compromised.

5 Most of the threats that we have identi�ed can also be found elsewhere [2,3,17,19,23].
6 Payment and IP protection mechanisms are already addressed in existing systems
and considered out of scope of the threat model in this paper.

Mobile App Distribution Transparency 7

Threat 3: Deliberate use of the signing key. The key holder, who may be
an outsourced storage provider, may for example be forced to sign the corre-
sponding app update by the respective judicative or due to economic interests.
The developer would not have a possibility to detect that the outsourced key has
been abused. Reports of government interventions in the mobile world reinforce
the associated potential threat. In 2021, the New York Times [22] reported the
removal of tens of thousands of apps from Chinese app stores.
Threat 4: A user may get another version of an app than other users.

If the signing key is compromised, a user cannot ensure to have the same version
of the app as all other users have. A distributor could provide a tampered version
only to a subset of users. This threat may also be interesting in terms of cen-
sorship, enforced by state actors like the Internet censorship regime of Iran [1].
How can a user be sure to receive the same version in, e.g., the USA and in
Iran without any geographical di�erences? However, distributing di�erent app
versions is also done by the app developers themselves, as a recent study [14] re-
vealed 596 apps with geographical di�erences that may expose a certain security
and privacy risk for users in those countries.

4 Architecture of the Veri�able System Design

This section introduces the components used to design our novel concept. To
evaluate and to verify the viability of the proposed system, we have implemented
a proof-of-concept prototype. Speci�c implementation parts have been set up by
using or adapting available open source components, including F-Droid for dis-
tributing Android apps and Google Trillian for the transparency log backend.
The �rst subsection details the individual phases with regards to the previously
de�ned stakeholders. The second subsection lists the involved system compo-
nents from a more software-centered approach.

4.1 Phases

The proposed system design includes three main phases based on the intended us-
ages of the de�ned stakeholders: distribution, veri�cation, and monitoring phase.
Fig. 2 provides an overview about the phases including the relevant stakeholders
and tasks.
Distribution phase: The distribution phase begins as soon as the developer
has �nished the implementation of the app. At this point, the developer wants
to distribute the app to its users by using the respective infrastructure of the
distributor. First, the developer uploads the app or the source code of the app
to the store provided by the distributor. Additionally, the developer may want
to sign the app or allow the distributor to sign the �nal package.

At this point, our system proposal extends the work�ow by extracting rele-
vant app metadata that is going to be published and to create a respective log
entry via the dedicated transparency log system. This step is performed by the

8 M. Lins et al.

Developer Distributor

1. Upload APK file 3. Create new log entry

2. Prepare log data

4. Provide inclusion proof

Phase 1 - Distribution

Developer

Phase 2 - Verification

User
5. Download APK file

User

Transparency Log System

1. Developer verifies log entry

2. User/Client requests inclusion proof Transparency Log System

Developer

Phase 3 - Monitoring

User Transparency Log SystemMonitor

1. Subscribe to log

3. Send notification

2. Periodically check log

Fig. 2: System �ow

distributor. As soon as the log entry has been successfully added to the log, the
distributor can release the app to its users.
Veri�cation phase: Once the app is available through the channel of the dis-
tributor, client-side veri�cation can be conducted. Veri�cation can be done by
several entities: the developer, the user, and potentially also by existing wit-
nesses. The developer may want to verify if the app has been logged properly.
This can be done by requesting an inclusion proof of the log. If the inclusion
proof veri�es the developer can be sure that the distributor has properly logged
the uploaded APK �le. Automatic veri�cation on the user side is done by the
client of the distribution system (e.g. F-Droid client). The client downloads the
requested app, calculates the expected logging information, and requests the
corresponding inclusion proof from the personality. If the expected information
and the logged information match, there will be no warnings shown to the user.
If it does not match, the app can still be installed, but the user will receive a
warning. As our transparency log system is publicly available, a user always has
the possibility to verify the log entry manually even without trusting the client
of the distributor.
Monitoring phase: The monitoring phase may start after the app has been
published and veri�ed by the developer. The developer can subscribe to noti�-
cations from a monitoring instance that observes the transparency log for new
entries based on the application ID and the version that the developer is in-
terested in (e.g. com.example.sampleapp:v1.0). When the monitor detects a
new log entry with the given namespace, it noti�es all subscribers. In case the
developer has not published a new update, someone else is trying to publish one.

Mobile App Distribution Transparency 9

build server transparency log

client verification

create log entries

distribute apps
pr

ov
ide

 ve
rif

ica
tio

n

de
ta

ils

Fig. 3: System overview

app source code
repository

f-droid build server

f-droid repository server

periodically fetch repository

f-droid signing server

f-droid metadata
repository

re
fe

re
nc

e
re

po
si

to
ry

Build Server

clo
ne

 s
ou

rc
e

co
de

publish
sign

Fig. 4: Build server

4.2 System Components

This section details the involved system components from a more technical point
of view including the prototype implementation. Fig. 3 illustrates the three main
components and their interactions.

Build Server The build server part includes the relevant components to build,
publish (sign) and deploy the given app. The individual tasks of such a build
server are to fetch and build the source code, to verify it's reproducibility and
to sign and publish the APK to the distribution server. Our prototype imple-
mentation is built around F-Droid. The F-Droid build server includes the build
environment, a dedicated F-Droid repository, and a signing server as illustrated
in Fig. 4. There were no changes needed for the F-Droid repository and signing
component. Although, for being used in a production environment, we would
recommend to request an inclusion proof before making the APK �le available
to users.

Prototype implementation: The most relevant changes for our prototype imple-
mentation were done in the build server component itself. During the publishing
process, the build server signs the APK �le and publishes it to the repository. At
this point the prototype implementation adds additional steps to the work�ow
before the signed APK �le is �nally deployed to the remote web server where it
is available for all users:

1. Extract relevant APK metadata (see section 4.2).
2. Select the proper tree ID for the speci�c repository.
3. Create a JSON object compliant to the personality data.
4. Request an authentication token from the personality.
5. Send tree ID and JSON object to the personality to create new log entry.

10 M. Lins et al.

Transparency Log The transparency log system consists of three components
as described below.

1. Log Server: The core element of our transparency log system is the log
server that manages one or multiple Merkle trees including the associated
functionalities like performing inclusion or consistency proofs. The log server
implementation is based on Google Trillian and did not require any adaptions
to work with the system as it is designed to be application-independent.

2. Database: The database is used to persist the Merkle tree. Our implementa-
tion uses a MySQL database.

3. Personality: The personality is the application-speci�c interface in front of
the log server. The personality de�nes and validates the data structure that
is used to store the leaf content in the transparency log. Additionally, it
exposes an interface to its users to interact with the transparency log. Our
prototype implementation does not allow everyone to create new log entries.
Therefore, special endpoints of the personality can only be access when prop-
erly authenticated and authorized for them.

Prototype implementation: Our prototype implementation includes a dedicated
personality, developed as a REST service by using the .NET core framework.
By using our build pipeline we are able to build a docker image including a
con�gurable personality instance. The Google Trillian implementation of the log
server provides the required *.proto �les to interact with the log server via gRPC.
The personality is responsible for de�ning the data structure that is stored within
the Merkle tree and for potential data validation tasks. Furthermore, it also
performs proper conversion from the C# object to the byte array that is �nally
stored in the transparency log. An essential implementation detail that we had
to take care of was to use the proper hashing algorithm and dedicated pre�xes
depending on the type of the tree element (e.g. 0x00 for leaf and 0x01 for node
elements), cf. RFC 9162 [16]. To prevent unauthorized write access on the log,
we have introduced two roles and implemented a token-based authentication
scheme. We are using an admin role responsible for managing trees (e.g. creating
a new tree or deleting an existing one) and a build-server role that is authorized
to create new log entries. Our docker image is parameterized to allow inclusion of
pre-de�ned credentials for both roles. If the F-Droid build server, e.g., wants to
create new log entries, it has to provide the correct credentials to the personality
�rst. If the credentials are valid, the personality provides the F-Droid build server
an authentication token that can be used to create new entries in the log.

Data Structure The data structure of the records stored in the veri�able
log includes the following information that is required to uniquely identify the
package as well as to verify its integrity:

� applicationId: The unique APK �le package name.
� version: The version number of the app release.
� apkHash: A cryptographic hash of the APK �le to verify its integrity.

Mobile App Distribution Transparency 11

Client Veri�cation This component is responsible for verifying that apps are
downloaded from a distributor were properly logged. This involves several steps
as listed below:

1. The client downloads the APK �le, but does not start the installation.
2. The veri�cation library gets relevant metadata (application ID, version, and

hash value) of the APK �le.
3. An inclusion proof is requested by sending a speci�cally crafted data object

including the metadata to the personality.
4. In case there is an inclusion proof available, the veri�cation library calculates

the expected root hash locally.
5. The locally calculated root hash is compared with the claimed root hash of

the log server.
6. If the root hashes are equal and therefore the inclusion proof is valid, the

client installs the app without further notice.
7. In case the inclusion proof is not valid, the user is noti�ed, but can continue

to install the app.

Prototype implementation: We have implemented a dedicated Android library to
perform the end-to-end veri�cation of the distributed APK �le to verify whether
it is properly logged or not. One of the main functionalities that are currently
implemented is the end-to-end veri�cation by validating an inclusion proof that
is provided by the personality. Besides the veri�cation part, the prototype im-
plementation handles all other kinds of communication to the personality (e.g.
requesting available tree IDs). The library has been developed in Java and is
publicly available. One main reason why we have decided to do the implemen-
tation in a dedicated Android library is that interested parties can easily use it
in a separate app or even integrate it into the o�cial clients of the mobile app
distributors (e.g. within the o�cial F-Droid client app).

5 Evaluation

5.1 Security Evaluation

This section evaluates our proposed system design to determine whether the
identi�ed threats, listed in section 3.2 can be successfully mitigated. Further-
more, the security implications are analyzed in case an attacker is able to com-
promise one or multiple of the newly added components.

Threat Mitigation Our system design makes any distribution attempt though
(or by) a distributor transparent and thus veri�able. In particular, the client
veri�es the log entry before installing an app and therefore it is not possible to
distribute an app without creating a new entry in the append-only and tamper-
proofed logging system. As this entry includes the package string, the version,
and the hash of the APK �le, any interested party can verify if this aligns with the

12 M. Lins et al.

corresponding log entry and that it is the same APK version that everyone else
has (Threat 4). A developer or an app distributor who monitors the log would
receive a noti�cation (Threats 1, 2, 3) as soon as the log entry of the particular
app is created so that unauthorized distribution attempts can be detected. Our
system design also enables independent and veri�able monitoring instances and
thus does not rely on trustworthiness of a distributor. Therefore, we can also
avoid falsi�ed or missing information (e.g. suppression of publication attempts)
compared to monitor speci�c distribution channels, directly (Threat 1).

Security Implications An attacker who is able to compromise one or multiple
of our newly added components could also have a major security impact with
regards to authenticity and integrity of the mobile distribution system. There-
fore, we also evaluate the security of our approach including the newly added
components7. The following paragraphs describe the results of our evaluation.

Malicious distributor bypasses the logging system. If a compromised distribu-
tor tries to bypass or manipulate the log entry, it avoids creating a new log entry
so that a manipulated APK version could be distributed because it cannot be
veri�ed. In that case, the client would detect that for this particular APK the
log entry is missing and notify the user about this security incident, who can
decide how to proceed.

Malicious distributor creates a manipulated log entry. As a client would detect
the absence of expected log entries, a malicious distributor may try to create a
manipulated log entry. To provide a valid log entry that matches a manipulated
APK �le, the distributor needs to calculate the hash value of the manipulated
version and write the new hash value to the log. A client that veri�es the ma-
nipulated APK �le, calculates the hash of it and veri�es the respective log entry.
The veri�cation would be successful as a log entry is present and the hash values
match. However, this manipulation attempt may be detected by monitors. The
developer of the app, for example, may have registered the APK name space
on a monitor that observes the log. The monitor would recognize that there is
a new log entry for a particular APK �le so the developer (as subscriber) will
be noti�ed. The developer could then easily compare the real hash value of the
original version with the hash value of the log entry and would detect the ma-
nipulation attempt. Further steps to be taken in that particular case are out of
scope for this paper.

Malicious client bypasses the log veri�cation. An attacker may be successful in
tricking the victim into installing a manipulated version of the distribution client
that bypasses the logging veri�cation to allow an attacker to distribute malicious
APK �les via the distribution channel. Besides the fact that an attacker who is
able to trick a victim into installing a malicious client could also install other

7 Note that global passive adversaries may learn which apps are installed by clients
by monitoring transmitted inclusion proofs, leaf log entries, and/or the embedded
APKmetadata. However, as there are many other ways to learn the same information
under our threat model, we consider this as out of scope and not a reason for keeping
such data con�dential.

Mobile App Distribution Transparency 13

malicious APK �les the same way, there are two e�cient countermeasures in
place: First, the client app could also be logged in the transparency log so that
the client can manually perform an inclusion proof. Second, the user could use
a dedicated app that performs the necessary calculations and communication to
the personality.

Malicious log server. A log operator may try to manipulate a log entry while
maintaining the same root hash. In this scenario the log operator may only
manipulate a single leaf, but keeps the root node hash the same so that the
cryptographic proofs for the remaining entries are still valid. This attack sce-
nario can be mitigated by running full audits on the Merkle tree. A full audit
recalculates the root node hash from the available leaf values. If the full audit
results in a root node hash that does not match the claimed one, the suspicious
behavior can be detected. From a component point-of-view, a full audit could
be performed by monitors.

Unauthorized write access to the log server. The transparency log should be
publicly readable by design to allow every interested party to verify log entries.
However, when it comes to write permissions, it is essential to consciously decide
who is allowed to write to the log. In case arbitrary parties are allowed to write
to the log, it is still possible to verify the entries. However, data that has been
written to the log can never be removed again due to its append-only property.
In regard to the design proposal, it is suggested to only allow authenticated
distribution systems to write to such logs.

Split-view attack by a malicious log server. A split-view attack can be miti-
gated by using witnesses. The log server is independent of the speci�c application
and thus any witness system could be used. However, to make use of the ad-
vantages of the consensus of witnesses, the client would need to verify them in
addition to inclusion proofs. This functionality is currently not implemented in
the prototype.

Orthogonally to the use of witnesses, split-view attacks can be mitigated by
querying the personality and log server, e.g. via Tor [28] circuits, as this would
make providing consistent split views unrealistic.

Malicious personality. A personality is not necessarily hosted in the same
trust zone or operated by the same operator as the log server. Therefore, an
external auditor may also want to audit the personality to verify its behavior.
The personality can prove correct behavior by additionally monitoring the log
server and thus persisting the signed tree heads. If it changes retroactively, the
personality can detect that.

5.2 Performance Evaluation

To evaluate the performance of our transparency log system, we used the meta-
data of all publicly available APK �les in the o�cial F-Droid repository and
created the corresponding log entries in our system. To perform that evaluation,
we wrote a Python script that �rst fetches the current F-Droid index �le8 of the

8 https://f-droid.org/repo/index-v2.json (accessed: 2023-02-07)

14 M. Lins et al.

o�cial repository. The second step is to parse the index �le in order to prepare
the proper log format required by our personality. Next, the script requests an
access token for the buildserver user and starts to send the POST requests to
create the new log entries.

For our performance measurements we used a computer with an Intel i7-
1185G7@3.00GHz CPU and 32GB of RAM for fetching the current F-Droid
index �le of the o�cial repository, to prepare the log entries and to send the
POST requests to our transparency log backend. Our transparency log backend,
including the personality and the log itself, is deployed on a virtual machine with
2 cores and 2GB RAM (Host CPU: Intel E5-2620 v3@2.40GHz). For the client
side end-to-end veri�cation we used an Android emulator running API level 31
with 1536MB RAM.

There are 9705 APK �les in the o�cial F-Droid repository. It took less than
47 minutes to create our log, less than 30ms on average per APK. The log
database required 8MB of disk storage. Inclusion proofs consist of 14 hashes
(825B) for the �rst leaf and of 7 hashes (510B) for the last leaf. Consistency
proofs similarly ranged from 14 hashes (821B) to 8 hashes (533B). An end-to-end
veri�cation with our Android library of the �rst leaf that requires the maximum
amount of intermediate node hashes in that particular tree took 296ms.

6 Open Research Questions

We have introduced a novel concept to mitigate necessary trust in mobile app
distribution systems, especially with focus on digital signatures on APK �les.
Our current approach includes mitigation techniques, but does not get rid of trust
anchors completely. Therefore, we are looking for a solution to remove such trust
anchors completely by extending our transparency log system in a way that still
meets the same security requirements (e.g. integrity and authenticity checks)
as digital signatures. Another open research question exists around third-party
libraries in apps. More precisely, we plan to enhance our transparency log system
so that it can also detect outdated or compromised third party libraries even in
obfuscated APK �les.

7 Related Work

7.1 Certi�cate Transparency

Certi�cate Transparency (CT) [10] is a process that is part of the web's public
key infrastructure. Its main purpose is to detect unauthorized or even maliciously
issued TLS certi�cates for websites by making them transparent and veri�able.
Whenever a certi�cate authority (CA) issues a new certi�cate, a new entry gets
recorded in one of the approved veri�able logs. These logs can be checked for sus-
picious behavior by independent monitors. As these logs are publicly auditable,
interested parties are able to create such a monitor. In that case the browser is
one of the possible auditors to verify if the particular certi�cate is part of the
veri�able log.

Mobile App Distribution Transparency 15

Di�erence: Both, CT and our proposed system are based on Merkle trees. There-
fore, we can use the same underlying Google Trillian implementation to handle
the tree structure. However, data stored within the tree is application-speci�c
as CT needs to store TLS certi�cate information and our system deals with
information about mobile apps. The most relevant di�erence is the end-to-end
veri�cation. In the CT ecosystem, the browser is responsible for verifying if the
certi�cate is properly logged by checking the signed certi�cate timestamp (SCT),
e.g., the X.509v3 certi�cate extension [21]. Our proposal, on the other hand, does
not need additional information, like an SCT on the client side as the end-to-end
veri�cation is directly performed with the transparency log system. At this point
we do not rely on digital signatures as our end-to-end veri�cation implementa-
tion crafts the expected log entry at the beginning of the veri�cation stage and
directly veri�es if a corresponding log entry is available or not.

7.2 Binary Transparency in F-Droid

F-Droid has already incorporated a module [25] that logs the signed app index
metadata �les in append-only storage. These �les contain information about the
available APKs of a speci�c F-Droid repository so that every update or change
also requires a change on the related �le. To ful�ll the requirement of append-
only storage, F-Droid uses a git repository that it claims is tamper proof. This
approach allows interested parties to verify if a speci�c binary was published by
the expected publishing entity as only an authorized party is allowed to push to
the respective git repository. As of the time of writing this paper, this feature is
activated for the Guardian Project repository.

Di�erence: A git repository is a content-addressable �lesystem [4] that is based
on a Merkle tree�the same data structure we use in our approach and prototype
implementation. If a new or updated �le is stored in a git repository, git calculates
the SHA-1 hash based on the �le's content (called a blob object) and stores this
information in an internal object database. A blob does not store the �lename
itself. Instead, we store the names of �les in a tree object; tree objects may
contain tree objects. This approach is analogous to the Unix �le system, where
a blob object would correspond to the data associated with a �le object, while
a tree corresponds to the entries found in a directory object.

The logging approach by F-Droid stores the app index metadata �le in a
speci�c git repository that is responsible for version control. This approach is
not scalable as metadata of all the available apps in the F-Droid ecosystem is
stored in one single �le. Furthermore, the information required to carry out the
veri�cation task is not directly managed by the tree structure, because it is just
stored in a �le, and thus the veri�cation does not bene�t from optimizations of a
tree structure like e�cient searching. Consequently, if an entity wants to verify if
a speci�c value is part of the tree, the whole �le must be downloaded by the client.
This �le is also larger than necessary for veri�cation since it contains information
that is not relevant for the veri�cation task at all (e.g. the applied license).
While such an approach may work reasonably well for F-Droid, this approach

16 M. Lins et al.

would not scale to the distribution scale seen in larger markets. In contrast,
our approach is scalable since we use Merkle trees directly and make e�cient
use of communication and computation e�ort through the direct provision of
consistency proofs over time with snapshots. We do not require the use of a full
data structure at once.

7.3 Blockchain

Blockchains are built around a distributed public ledger that provides similar
properties to our approach, including an append-only data structure, tamper
resistance, and transparent veri�cation. The ledger contains blocks that consist
of a hash of the previous block, a timestamp, and the transaction data.

The problems tackled by using a blockchain are orthogonal with regards to
authentication, integrity, and non-repudiation [7] that can be addressed by using
digital signatures. A digital signature can prove that signed data has not been
tampered with afterwards and that it is signed by an entity that possesses the
respective signing key. However, for example, the time of signing requires trust in
the signing party that is essential for �nancial transactions or legal contracts. To
address this trust dependency, a blockchain uses a distributed trust mechanism,
where interested parties can store a list of transactions and thus are able to
verify that they have not been tampered with.

Di�erence: From a security point of view, blockchains ful�ll requirements like
tamper protection as well. However, their veri�cation procedure is not scalable9.
For a full end-to-end veri�cation, a blockchain based approach requires the clients
to download the whole chain whereas the transparency log approach only re-
quires the hashes of the audit path (log(n)) and ideally checkpoints signed by
independent witnesses.

8 Conclusion

Current mobile app distribution systems use digital signatures to ensure in-
tegrity and authenticity of their apps. However, as shown in this paper, there
are realistic threats which may compromise digital signatures. For example, it
is currently impossible to detect unauthorized usage of signing keys. A more
general perspective on this kind of problem is how to compliment or enhance
the trust placed on digital signatures in mobile app distribution systems.

This paper introduces a novel concept to mitigate threats found in mobile
app distribution systems by making any distribution attempt transparent and
thus veri�able. Additionally, a prototype has been implemented to prove the
practicability and feasibility of the design proposal, including a detailed security

9 In terms of e�ciency comparison, we are not even assuming proof-of-work consensus
algorithms, but permissioned ledgers comparable to the authentication of submitters
performed by the personality.

Mobile App Distribution Transparency 17

evaluation of the newly added components as well its performance. Our evalua-
tion shows that an attacker would have to compromise all the involved system
components and security controls to successfully distribute a malicious APK �le
without detection. While the proposed system focuses on mobile app distribu-
tion systems, it can also be applied in other scenarios where digital signatures
are used and may not be trustworthy.

Acknowledgement. This work has been carried out within the scope of Digi-
dow, the Christian Doppler Laboratory for Private Digital Authentication in the
Physical World and has partially been supported by the LIT Secure and Correct
Systems Lab. We gratefully acknowledge �nancial support by the Austrian Fed-
eral Ministry of Labour and Economy, the National Foundation for Research,
Technology and Development, the Christian Doppler Research Association, 3
Banken IT GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum
GmbH, NXP Semiconductors Austria GmbH & Co KG, Österreichische Staats-
druckerei GmbH, and the State of Upper Austria.

A Availability

Our prototype implementation consists of the following component repositories
and is publicly available.

� F-Droid server: The relevant source code segments have been extracted
from the fork of the o�cial F-Droid server code. Source Code: https://
github.com/mobilesec/fdroidserver_transparencyextension

� Personality: The personality project contains the code for the application-
speci�c interface between the client library, the F-Droid server, and the
Google Trillian logging infrastructure. Source Code: https://github.com/
mobilesec/mobiletransparency-personality

� Android library: The Android library project contains the code for the
end-to-end veri�cation of APK �les. Source Code: https://github.com/
mobilesec/mobiletransparency-androidlibrary

� Evaluation setup: Contains the test script, con�guration �le and reference
data of our performance evaluation. Source Code: https://github.com/
mobilesec/mobiletransparency-data

We also provide a running personality with this version of the codebase along
with a transparency log running the unmodi�ed Google Trillian case (from
https://github.com/google/trillian) that has been pre-�lled with APK
metadata from the index of the o�cial F-Droid repository as well as some of
our test apps using the Android library for veri�cation. It is available through
a Tor Onion service at http://madtl6agno7zze4ll66ylxmb4lkmb72attwfhcmf
bspyx35v4e6ut5ad.onion/Log/ListTrees.

https://github.com/mobilesec/fdroidserver_transparencyextension
https://github.com/mobilesec/fdroidserver_transparencyextension
https://github.com/mobilesec/mobiletransparency-personality
https://github.com/mobilesec/mobiletransparency-personality
https://github.com/mobilesec/mobiletransparency-androidlibrary
https://github.com/mobilesec/mobiletransparency-androidlibrary
https://github.com/mobilesec/mobiletransparency-data
https://github.com/mobilesec/mobiletransparency-data
https://github.com/google/trillian
http://madtl6agno7zze4ll66ylxmb4lkmb72attwfhcmfbspyx35v4e6ut5ad.onion/Log/ListTrees
http://madtl6agno7zze4ll66ylxmb4lkmb72attwfhcmfbspyx35v4e6ut5ad.onion/Log/ListTrees

18 M. Lins et al.

References

1. Aryan, S., Aryan, H., Halderman, J.A.: Internet Censorship in Iran: A First Look.
In: 3rd USENIX Workshop on Free and Open Communications on the Internet
(FOCI '13). USENIX Association, Washington, DC, USA (Aug 2013), https://
www.usenix.org/conference/foci13/workshop-program/presentation/aryan

2. Barrera, D., McCarney, D., Clark, J., van Oorschot, P.C.: Baton: Certi�cate Agility
for Android's Decentralized Signing Infrastructure. In: WiSec '14: Proceedings of
the 2014 ACM conference on Security and privacy in wireless & mobile networks.
pp. 1�12. ACM, Oxford, United Kingdom (Jul 2014). https://doi.org/10.1145/
2627393.2627397

3. Basin, D., Cremers, C., Kim, T.H.J., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: Attack Resilient Public-Key Infrastructure. In: CCS '14: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
pp. 382�393. ACM, Scottsdale, AZ, USA (Nov 2014). https://doi.org/10.1145/
2660267.2660298

4. Chacon, S., Straub, B.: Pro Git. Apress, Berkeley, CA, USA, second edn. (2022),
https://git-scm.com/book/en/v2

5. Coufalíková, A., Klaban, I., �lajs, T.: Complex strategy against supply chain at-
tacks. In: 2021 International Conference on Military Technologies (ICMT). pp. 1�
5. IEEE, Brno, Czech Republic (2021). https://doi.org/10.1109/ICMT52455.2021.
9502768

6. Cutter, A., Drysdale, D.: Trillian Personalities (2022), https://github.com/google/
trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.
md

7. Di Pierro, M.: What Is the Blockchain? Computing in Science & Engineering 19(5),
92�95 (2017). https://doi.org/10.1109/MCSE.2017.3421554

8. Eijdenberg, A., Laurie, B., Cutter, A.: Veri�able data structures (2015), https:
//github.com/google/trillian/blob/30160804ab5203cde4412fe26f55a4149112bd92/
docs/papers/Veri�ableDataStructures.pdf

9. F-Droid: Docs � F-Droid � Free and Open Source Android App Repository (2023),
https://f-droid.org/docs/ (accessed: 2023-01-23)

10. Google: Certi�cate Transparency (2023), https://certi�cate.transparency.dev/ (ac-
cessed: 2023-01-23)

11. Google: How Log Proofs Work � Certi�cate Transparency (2023), https://sites.
google.com/site/certi�catetransparency/log-proofs-work (accessed: 2023-01-23)

12. Google: Use Play App Signing � Play Console Help (2023), https://support.google.
com/googleplay/android-developer/answer/9842756 (Accessed: 2023-01-12)

13. Herr, T., Loomis, W., Scott, S., Lee, J., Schroeder, E.: Breaking Trust � Shades of
Crisis Across an Insecure Software Supply Chain (Feb 2021), https://www.usenix.
org/conference/enigma2021/presentation/herr

14. Kumar, R., Virkud, A., Raman, R.S., Prakash, A., Ensa�, R.: A large-scale
investigation into geodi�erences in mobile apps. In: Proceedings of the 31st
USENIX Security Symposium (USENIX Security '22). pp. 1203�1220. USENIX
Association, Boston, MA, USA (Aug 2022), https://www.usenix.org/conference/
usenixsecurity22/presentation/kumar

15. Laurie, B., Langley, A., Kasper, E.: RFC 6962: Certi�cate Transparency (2013).
https://doi.org/10.17487/RFC6962

16. Laurie, B., Messeri, E., Stradling, R.: RFC 9162: Certi�cate Transparency Version
2.0 (2021). https://doi.org/10.17487/RFC9162

https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://doi.org/10.1145/2627393.2627397
https://doi.org/10.1145/2627393.2627397
https://doi.org/10.1145/2627393.2627397
https://doi.org/10.1145/2627393.2627397
https://doi.org/10.1145/2660267.2660298
https://doi.org/10.1145/2660267.2660298
https://doi.org/10.1145/2660267.2660298
https://doi.org/10.1145/2660267.2660298
https://git-scm.com/book/en/v2
https://doi.org/10.1109/ICMT52455.2021.9502768
https://doi.org/10.1109/ICMT52455.2021.9502768
https://doi.org/10.1109/ICMT52455.2021.9502768
https://doi.org/10.1109/ICMT52455.2021.9502768
https://github.com/google/trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.md
https://github.com/google/trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.md
https://github.com/google/trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.md
https://doi.org/10.1109/MCSE.2017.3421554
https://doi.org/10.1109/MCSE.2017.3421554
https://github.com/google/trillian/blob/30160804ab5203cde4412fe26f55a4149112bd92/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/30160804ab5203cde4412fe26f55a4149112bd92/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/30160804ab5203cde4412fe26f55a4149112bd92/docs/papers/VerifiableDataStructures.pdf
https://f-droid.org/docs/
https://certificate.transparency.dev/
https://sites.google.com/site/certificatetransparency/log-proofs-work
https://sites.google.com/site/certificatetransparency/log-proofs-work
https://support.google.com/googleplay/android-developer/answer/9842756
https://support.google.com/googleplay/android-developer/answer/9842756
https://www.usenix.org/conference/enigma2021/presentation/herr
https://www.usenix.org/conference/enigma2021/presentation/herr
https://www.usenix.org/conference/usenixsecurity22/presentation/kumar
https://www.usenix.org/conference/usenixsecurity22/presentation/kumar
https://doi.org/10.17487/RFC6962
https://doi.org/10.17487/RFC6962
https://doi.org/10.17487/RFC9162
https://doi.org/10.17487/RFC9162

Mobile App Distribution Transparency 19

17. Mayrhofer, R., Stoep, J.V., Brubaker, C., Kralevich, N.: The Android Platform
Security Model. ACM Trans. Priv. Secur. 24(3) (Apr 2021). https://doi.org/10.
1145/3448609

18. Meiklejohn, S., Kalinnikov, P., Lin, C.S., Hutchinson, M., Belvin, G., Raykova,
M., Cutter, A.: Think Global, Act Local: Gossip and Client Audits in Veri�-
able Data Structures. Computing Research Repository (CoRR), arXiv:2011.04551
(2020). https://doi.org/10.48550/ARXIV.2011.04551

19. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: Bringing Key Transparency to End Users. In: Proceedings of the 24th
USENIX Security Symposium (USENIX Security '15). pp. 383�398. USENIX As-
sociation, Washington, DC, USA (Aug 2015), https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/melara

20. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Func-
tion. In: Pomerance, C. (ed.) Advances in Cryptology � CRYPTO '87, LNCS,
vol. 293, pp. 369�378. Springer, Berlin, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2_32

21. Mozilla: Certi�cate Transparency (2023), https://developer.mozilla.org/en-US/
docs/Web/Security/Certi�cate_Transparency (accessed: 2023-01-23)

22. Nicas, J., Zhong, R., Wakabayashi, D.: Censorship, Surveillance and Pro�ts: A
Hard Bargain for Apple in China. The New York Times (May 2021), https://www.
nytimes.com/2021/05/17/technology/apple-china-censorship-data.html (accessed:
2023-01-23)

23. Nikitin, K., Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Gasser, L., Kho�, I., Cap-
pos, J., Ford, B.: CHAINIAC: Proactive Software-Update Transparency via Collec-
tively Signed Skipchains and Veri�ed Builds. In: Proceedings of the 26th USENIX
Security Symposium (USENIX Security '17). pp. 1271�1287. USENIX Associa-
tion, Vancouver, BC, Canada (Aug 2017), https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/nikitin

24. Nordberg, L., Gillmor, D.K., Ritter, T.: Gossiping in CT. Internet-Draft draft-ietf-
trans-gossip-05, Internet Engineering Task Force (Jan 2018), https://datatracker.
ietf.org/doc/draft-ietf-trans-gossip/05/, work in Progress

25. Steiner, H.C.: Binary Transparency Log for https://guardianproject.info/fdroid
(2023), https://github.com/guardianproject/binary_transparency_log (accessed:
2023-01-23)

26. Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly,
N., Kho�, I., Ford, B.: Keeping Authorities �Honest or Bust� with Decentralized
Witness Cosigning. In: 2016 IEEE Symposium on Security and Privacy (SP). pp.
526�545. IEEE, San Jose, CA, USA (May 2016). https://doi.org/10.1109/SP.2016.
38

27. The MITRE Corporation: Supply Chain Compromise (2023), https://attack.mitre.
org/techniques/T1195/ (accessed: 2023-01-23)

28. The Tor Project: Tor Project � Anonymity Online (2023), https://www.torproject.
org/ (accessed: 2023-02-07)

https://doi.org/10.1145/3448609
https://doi.org/10.1145/3448609
https://doi.org/10.1145/3448609
https://doi.org/10.1145/3448609
https://doi.org/10.48550/ARXIV.2011.04551
https://doi.org/10.48550/ARXIV.2011.04551
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://developer.mozilla.org/en-US/docs/Web/Security/Certificate_Transparency
https://developer.mozilla.org/en-US/docs/Web/Security/Certificate_Transparency
https://www.nytimes.com/2021/05/17/technology/apple-china-censorship-data.html
https://www.nytimes.com/2021/05/17/technology/apple-china-censorship-data.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/
https://github.com/guardianproject/binary_transparency_log
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/techniques/T1195/
https://www.torproject.org/
https://www.torproject.org/

	Mobile App Distribution Transparency (MADT): Design and evaluation of a system to mitigate necessary trust in mobile app distribution systems

