Applying Relay Attacks to Google Wallet

Michael Roland
NFC Research Lab Hagenberg
University of Applied Sciences Upper Austria

7th WIMA NFC – Research Track
10 April 2013, Monaco

This work is part of the projects “4EMOBILITY” and “High Speed RFID” within the EU program “Regionale Wettbewerbsfähigkeit ÖÖ 2007–2013 (Regio 13)” funded by the European Regional Development Fund (ERDF) and the Province of Upper Austria (Land Oberösterreich).
Outline

- Introduction
 - Relay Attack
 - Software-based Relay Attack
- Google Wallet
- Google Wallet Relay Attack
- Google’s Response
Relay Attack

- Smartcard
- Mole (Relay Reader)
- Proxy (Card Emulator)
- Smartcard Reader

© Michael Roland
www.mroland.at

Applying Relay Attacks to Google Wallet, WIMA 2013
Software-based Relay Attack

- Relay attack: Mole requires close physical proximity to device-under-attack

- Software-based Relay Attack:
 - Secure element access through application processor
 - App (software) replaces physical mole
 - App needs access to secure element and network interface(s)
 - Secure element access typically through privilege escalation
Software-based Relay Attack

NFC-enabled Mobile Phone

Application Processor

Secure Element API

Relay Software

Network API

Secure Element

NFC-enabled Mobile Phone

Card Emulator

Card Emulator Software

Network API

Card Emulation API

NFC hardware capable of card emulation

NFC/RFID link

Point-of-Sale Terminal

Applying Relay Attacks to Google Wallet, WIMA 2013
Software-based Relay Attack

NFC-enabled Mobile Phone

Application Processor

Secure Element API

Secure Element

C-APDU (5)

(7) R-APDU

(3) C-APDU

(4) Relay Software

(8)

Network API

R-APDU (9)

Card Emulator

Card Emulator Software

Network API

Card Emulation API

NFC hardware capable of card emulation

Point-of-Sale Terminal

R-APDU (11)

(1) C-APDU

© Michael Roland
www.mroland.at
Google Wallet

- Container for
 - Payment cards
 - Gift cards
 - Reward cards
 - Special offers

- Android app
 - User interface

- Java Card applets on secure element
 - Secure data storage
 - Interface with POS terminals
Analysis of Google Wallet

- Focus on communication between
 - Android app and secure element
 - POS terminal and secure element

- Secure element contains
 - Google Wallet on-card component
 - Manages access to payment cards, …
 - Google MIFARE access applet
 - Provides access to secure element’s MIFARE 4K memory
 - EMV-compliant proximity payment application
Google Wallet’s PIN

- Unlocks access to
 - User interface (Google Wallet app)
 - EMV payment cards

- Issues
 - PIN is verified by Google Wallet app
 - Known attack on PIN hash exists!
 - On-card component does not verify the PIN
 - Unlock command: 80 E2 00 AA 00
 - PIN is not necessary to unlock Google Wallet → Send unlock command instead!
Google Prepaid Card

- EMV-compliant
- MasterCard PayPass
- EMV Mag-Stripe protocol
 - with dynamic CVC3
Relay Attack on Google Wallet

- Relay app
 - Android app
 - Unlock/lock Google Wallet on-card component
 - Forward APDUs to secure element
 - Needs root access

- Card emulator
 - Python application
 - ACR 122U
 - Notebook computer

- POS terminal
 - Hypercom Artema Hybrid
 - ViVOtech ViVOpay 5000

Relayed payment transaction successful
Google’s Response

- April 2012: Reported to Google
- End of April 2012: New installations no longer vulnerable
- June 2012: New secure element applet
- September 2012: Existing users are forced to install update
- October 2012: PIN verification on secure element
Demo available at
http://youtu.be/hx5nbkDy6tc
http://youtu.be/ R2JVPJzufg

Michael Roland
Research Associate, NFC Research Lab Hagenberg
University of Applied Sciences Upper Austria
michael.roland (at) fh-hagenberg.at
www.mroland.at

This work is part of the projects “4EMOBILITY” and “High Speed RFID” within the EU program “Regionale Wettbewerbsfähigkeit ÖÖ 2007–2013 (Regio 13)” funded by the European Regional Development Fund (ERDF) and the Province of Upper Austria (Land Oberösterreich).